2005 Proceedings of the Autumn Conference, Korea Statistical Society

Bayesian approach for categorical Table with Nonignorable

Nonresponse

Choi, BoSeung *, Park, YouSung

Abstract

We propose five Bayesian methods to estimate the cell expectation in an incomplete multi-
way categorical table with nonignorable nonresponse mechanism. We study 3 Bayesian meth-
ods which were previously applied to one-way categorical tables. We extend them to multi-
way tables and, in addition, develop 2 new Bayesian methods for multi-way categorical tables.
These five methods are distinguished by different priors on the cell probabilities: two of them
have the priors determined only by information of respondents; one has a constant prior; and
the remaining two have priors reflecting the difference in the response mechanisms between
respondent and non-respondent.We also compare the five Bayesian methods using a categori-

cal data for a prospective study of pregnant women.

KEY WORDS: Bayesian analysis; Nonignorable nonresponse; Priors; Boundary solution; EM algorithm

1. Introduction

The problem of missing data arising from nonresponse is common in most surveys and becomes a
serious issue as the nonresponse rate increases.

Nonresponse can be distinguished by three types of nonresponses (Little and Rubin 1987):
missing completely at random (MCAR) which means that the probability of missing on a variable
of interest is independent of all variables including itself in the survey; missing at random (MAR) in
which the nonresponse depends only on observed data; non-ignorable in which nonresponse depends
on the unobserved values. Any model with MCAR or MAR is called ignorable nonresponse model.

When the response mechanism obeys nonignorable nonresponse in categorical data analysis,
the maximum likelihood estimation often yields boundary solutions where the probability of non-
response is estimated to be zero in some cells of the table. The conditions that the maximum

likelihood (ML) suffers from the boundary solution have been proposed in one-way categorical
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table (Baker and Laird 1988, Michels and Molenbergs 1997). Baker, Rosenberger and Dersimo-
nian (1992) presented close forms of ML estimates for incomplete two-way categorical tables using
loglinear model. In particular, they provided a sufficient and necessary condition under which the
ML estimates fall in the boundary solution in two-way categorical tables.

Park and Brown(1994) and Park (1998) proposed a Bayesian approach to avoid the bound-
ary solution problem in a one-way categorical table. The prior depends only on information of
respondents. However, this respondent-driven prior contradicts to the fundamental principle that
the nonrespondents have different response pattern from those of respondents in the nonignorable
nonresponse model. We extend Park and Brown and Park’s empirical Bayesian approach (1994,
1998) not only to a two-way categorical table but also to the prior depending on information from
both respondent and nonrespondent. This prior can reflect different response patterns between
respondents and nonrespondents. We also present generalized expectation maximization (EM)
algorithm to estimate the cell probability specified by the loglinear models.

2. Bayesian models

We describe five Bayesian approaches to accommodate nonignorable nonresponse in a two-way
categorical table. Let X; and X» be response variables indexed by I and J categories, respectively.
We also let R; = 1 when X is observed and Ry = 2 when X is missing. Let y;;z be the count
belonging to the ith category of X;, the jth category of X», the kth value of R,, and the lth value
of RQ.
Throughout this chapter, we assume a multinomial assumption for the three types of observa-
tions to have the following log likelihood proportional to
b DY yiu - log(migu) + ) yisrz - log(miraz)
7 i

1

+ D yrjon - log(myjor) + vyt - log(my22) (1)
J

where 75 = Pr[Xy =4, X2 =j,Ri =k,Ry =lJand N = Zi,j’k’, Yiskt Is fixed.
To avoid a boundary solution of ML in model (1), we impose the Dirichlet priors to the cell

probabilities (71'2']'11, Tij12, Tij2l, 7r,~j22) as given by
3511 Sij12 dij21 022
l I I l Tl Tijl2 " Tij21 " Ty522 - (2
i g

The multinomial distribution of (1) for observations and the prior distribution of (2) yield the
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following log posterior distribution:

lpos = E E yijn1 - (mynn - B) + E Yig12 105( E exp(zij12 'ﬂ))
i g i ]
+ E Y4j21 '103( E exp(zijot '5)) + Yyt20-log ( E E :eXD(chzz 'ﬂ))
J i i J

+ 3 Gin o 9) — (N + 544) 105 | 3 explaigu5)) 3
igukl id.k,l
We maximize the posterior distribution given in (3) over parameter 3 by the generalized ex-
pectation maximization (GEM) algorithm (Dempster, Laird and Rubin 1977) with the following
E and M steps.
E-step : Using augmented ¥;;12 given ¥ir12, Yij21 given yyjz1, and yijoo given yy g0 for i =
,Tand j =1,---,J, the posterior (3) can be written as this augmented posterior distribu-

tion

lapos &< 303 3 5(yijn1 + Gijin) log(mijne) + 35, 305 (Wijnz + dijiz) log(mijiz)
+ 30 2, (ijzn + 8ija1) log(mijer) + 30, 305 (yijaz + Gijz2) log(mijee). (4)

To determine the expected augmented log posterior of (4), we average over missing counts ¥;;12,
¥ij21, Yij22 conditioning on the current parameter estimates, w;’};c’,, and observed counts y;yi2,
Y+j21, and Yy po2. Since yiji2, Yijer, and Yijz0 are multinomial random variates conditioned on
marginal sum ¥iy12, Y4521, and Y4422, respectively, the conditional expectations are given by

old old

o
ld ijkl ijkl _
Eoa(Uisulndfin Yiekt) = Vitn—ag = Yiski—aq—»  kl=12, 21 and 22
. Titkl Mtk

M-step : In this step, we max1m1ze the expected log postenor using the pseudo observaltdlons
Fij11 = Yijir +0s511, Pijrz = yz+12 old +5z]12, Yij21 = Y+j21 —ofa—-HSzgzl, and fij22 = y++22%+
dijo2. We impose the constraints on these pseudo observatxons so that their marginal sums are the
same as the corresponding marginal sums of observations: §4411 = Y4411, Fit12 = Yit12, J+j21 =
Y4521, and Jyy22 = Y4++22. Then, the expected log posterior function has the same form as the
likelihood obtained from a four-way contingency table with fully observed cell counts Yijre's- Thus,

using the iterative re-weighted least squares, we obtain the maximum posterior estimator (MPE)

of 8.
2.1 Five Types of Bayesian Methods

To complete the EM algorithm, we need to determine the hyper-parameters &;;11’s. We set the
sum of priors ), ikl ikt equal to the number of parameters involved in the loglinear model, p,
as Clogg et al. (1991) did. Under this constraint (i.e., zi,j,k,l 8ijk1 = p), we propose five types of
priors as follows. We first allocate d;jz; for the MPE of m;jz to shrink toward the MLE obtained
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under ignorable nonresponse. That is, we determine §;;4; depending only on the respondent counts
Yij11, Yi+12s Y+j21, and yy22. We call these priors respondent-driven priors and classify them into
two types as below.

The first type of respondent-driven priorsis, foralli=1,...,Tand j=1,...,J,

Sijht = Vig 2L, (5)
Y++11
where Vi =p- ﬁﬂ‘—; fork=1,2and {=1,2.

On the other hand, the second type of respondent-driven priors gives no prior on ;ji1. That
is, The second type of priors are the same as those of the first type except d;;:; = 0 for all ¢ and j.
In case of one-way contingency table (i.e., either X or X; is fully observed without missing) and
Y4122 = 0, the first type is reduced to Park (1998), whereas the second type is reduced to Park
and Brown (1994). These two types of respondent-driven priors may bring a controversy because
the nonrespondents are usually assumed to have different response patterns from the respondents
in the nonignorable model.

In order to reflect different response patterns between the respondent and nonrespondent, we
propose the following third type of priors d;;x; depending on both respondent’s and nonrespondent’s
information. So d;jx is assigned to be proportional to expected cell frequencies, mf},‘f,, where
calculated at the previous iteration. We distinguish this third type of priors ;5 from previous

priors &;jx::

old
. vkl' %ﬂ;’i) fOI‘k=1,l=1
ikt = mtfdm ) . : (6)
ijkl
Ve r—nﬁ:+ﬁ).§ fork#lorl#2
old
where Vi =p- %ﬁt’i fork=1,2and!=1,2.
++++
Therefore, these new priors depend on their respective parameters m;’}g, to be estimated in

previous iteration. The main reason we use a weighted priors of mgfd, /m%4,, and 1/IJ on dij12,

gijzl, and 5,-]-22 is to prevent a boundary solution on m;j12, Mije1, and mje9, respectively. We also
define the fourth type of priors by letting 351-11 = 01in (6) as we obtained the second type from the
first type.

The last type of priors extend the constant prior of Clogg et al. '(1991) used for one-way
categorical table to those for two-way categorical table as follows.

. 0 ifk=1,1=1
Oijrt = . (M
B.(f5) fork#lorl#2.

These five types of priors will be compared in the subsequent two sections using empirical data

and simulation studies.
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Table 1: Data for the relationship between smoking and new born’s weight

Birth weight(in grams)

Smoker <2500 22500 Missing
Yes 4512 21009 1049
No 3394 24132 1135

Missing 142 464 1224

3. Case study

We compare the five Bayesian methods with the maximum likelihood estimate (ML) through
a prospective study of pregnant women to access the relationship between smoking status and
newborn’s weight. As competitors, we also consider two other methods (i.e., another ignorable
model and another nonignorable model). Table 1 provides a categorical data for a prospective
study of pregnant women to assess the relationship between perinatal factors and the subsequent
development and course of abnormalities in the offspring (Baker, Rosenberger and Dersimonian
1992). The categorical table cross-classifies mother’s self-reported smoking status (smoker or non-
smoker) with newborn’s weight (<2500 grams, >2500 grams). The column supplement contains
only data on smoking status (4 percent of the data), the row supplement contains only data on
newborn’s weight (1 percent of the data), and the other is the count of the number missing data
on both variables (2 percent of the data).

For comparison, we consider the following one ignorable and two nonignorable nonresponse

models.

Model 1 : log(mijn) = Bo + ﬂ}}l + ﬂf‘}z + ﬁfh + ,3_';;2 + ﬂ%Xﬁ + ﬂf{le,
Model 2 : log(miju) = fo + B, + B, + Bh, + Bh, + B n, + Bi.n, + 5% x, + BE pas
Model 3 : log(muju) = o + B, + B, + Bk, + Bhy + Born, + B p, + 8% x, + B pae (8)

Denote the ML estimates under Model 1, Model 2, and Model 3 by IGarr, NIG1py, and
NIG2pp, respectively. We alsolet NIGlgg;, NIGlpgs, and NIG1 g3 be the Bayesian estimates
with priors d;5x; depending on parameter m;jx; given by (6), with the same priors as NIG1gg;
except d;;11 = 0, and with the constant priors given by (7), respectively. Finally, let NIGlggs
and NIG1lpgs be the empirical Bayesian estimates with the respondent-driven priors given by
(5) where NIG1ggs has the same priors as NIGlpga except §;;11 = 0. All of these NIG1pE;,
NIGlpga, NIG1ggs, NIG1pEgs, and NIG1ggs are obtained under Model 2 given in (8).

Table 2 summarizes the four conditional probabilities from each of the eight estimation meth-
ods. The NIG2py is actually the model that Baker, Rosenberger and Dersimonian (1992) se-
lected. From the third and sixth rows, we can observe that there is no difference between IGas1,
and NIG2pr, implying little advantage of the nonignorable Model 3 over the ignorable Model
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Table 2: Conditional probabilities in the relationship between smoking and new born’s weight

(W:weight, S:smoking, NS:non-smoking)

NIGiymr NIGlpey NIGlpgz NIGlpes NIGlpgs NIGlpes IGumr NIG2mL
P(W < 2500{S)(1) 1774 1781 .1834 .1850 1774 1775 1779 .1799
P(W < 2500|NS)(2)]  .1231 .1233 .1256 .1268 1231 1231 1241 .1256
9 1.441 1.444 1.460 1.459 1.441 1.442 1.434 1.432
P(S|W < 2500)(3) .5883 .5885 .5892 .5862 .5879 .5842 .5707 .5707
P(S|W > 2500)(4) 4817 .4814 4784 4754 .4813 ATTT .4654 .4654
ol 1.221 1.222 1.232 1.233 1.221 1.223 1.226 1.226

1. Compared to IGarr, the NIGlggp:, NIG1pgs, and NIG1lggs produce larger conditional
probabilities P(weight < 2500|smoking) and P(weight < 2500|non-smoking) with the exception
of NIG1pg; for P(weight < 2500| non-smoking). This is completely reversed for NIGlggs and
NIGggs. Thus, NIG1gg:, NIG1gE2, and NIG1pgs more allocate the column supplements into
the category “weight < 2500” than IG sy, but NIGlgg and NIGRgs less allocate than IG .
Since IG sy can ignore the supplement information in inference, we may conclude that NIG1gg:,
NIG1gEg2, and NIG1ggs are more reasonable for the nonignorable model, Model 2.

4. Concluding Remarks

We investigated Bayesian analysis for incomplete two-way categorical tables with nonignorable
nonresponse under which the maximum likelihood estimates often fall in the boundary solution,
causing the ML estimates unstable. To avoid the boundary solution problem, we proposed the
five types of Bayesian methods. These Bayesian methods include the previous Bayesian models as
special cases. The two among the five Bayesian models were proposed to reflect different response
patterns between respondents and nonrespondents.

Data analysis showed that these new Bayesian methods were more reasonable in the sense that

nonignorable nonrespose mechanisms are more reflected and close to the actual results.
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