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Abstract

Recently, as a result of the growing interest in modelling stationary processes with discrete
marginal distributions, several models for integer valued time series have been proposed in the
literature. One of theses models is the integer-valued autoregressive(INAR) models. However,
when modelling with integer-valued autoregressive processes, there is not yet distributional
properties of forecasts, since INAR process contain an accrued level of complexity in using
the Steutal and Van Harn(1979) thinning operator “o”.

In this study, a manageable expression for the asymptotic mean square error of predict-
ing more than one-step ahead from an estimated poisson INAR(1) model is derived. And,
we present a bootstrap methods developed for the calculation of forecast interval limits of
INAR(p) model. Extensive finite sample Monte Carlo experiments are carried out to com-
pare the performance of the several bootstrap procedures.

Keywords : Stationary process, Integer valued time series, Sieve bootstrap.

1 Introduction

When studying a time series, one of the main goals is the estimation of the forecast intervals based
on an observed sample path of the process. That is, providing information about the distribution of
the variable X7 5 conditional on a realization of the past variables X = {X1,--- , X7} is the main
objective. In particular, the aim is to construct prediction intervals I(Xr) = {L((X7),U(X7)}
designed to capture the future value of X4 with a fixed probability, the nominal coverage. But
INAR(p) process

Xe=amoXi1+o00X, o+ +apo Xy p+¢

has Steutal and Van Harn operator ”o”, it is not easy task to obtain distributional properties of
forecasts. Recent work by Freeland and McCabe(2004) focus on the coherent forecast, in the sense
of producing only integer forecasts of count variable. They propose point forecasts in the context
of the poisson INAR(1) model, based on the integer-valued median of the forecast distribution.
Estimation uncertainty is accommodated by producing a maximum likelihood-based estimate of
the forecast distribution and constructing confidence intervals around the estimated probabilities.

And McCabe and Marin(2005) presents a Bayesian methodology for producing coherent forecasts
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of count time series. Both research are based on estimates of the h-step ahead predictive mass
functions.

In contrast, in this paper, we get the formula of the mean square error of the predictor error
conditional on {Xr,---,X1} for the poisson INAR(1) process. However, we obtained explicit
formula only for poisson INAR(1) process in the present. Of course, poisson based prediction
intervals fail if the data are not poisson distributed.

Therefore, we proposes an alternative method that avoid theses problems. The bootstrap
provides an estimate of the conditional distribution of X1 5.

The paper is organized as follows. In Section 2, INAR(p) processes are described in some
detail. We analyze, in section 3, the unconditional mean squared error of the predictor of poisson
INAR(1) model. Section 4 introduces the sieve bootstrap for estimating forecasts intervals for
INAR(p) process. Section 5 presents a Monte carlo study comparing the finite sample properties

of the sieve bootstrap. We show that the result of sieve bootstrap for INAR(p) are not the similar
for AR(p) process.

2 Time series models for counts

The INAR(1) processes is defined by the difference equation
Xg =010Xg_1+6t (1)

with the state spce of the process being Ng = N{J{0}. It is assumed that o; € [0,1) and ¢; is a
sequence of i.i.d non-negative integer-valued random variables with mean E(e;) = pe, Var(e) =
o2. The process {X;} satisfying (1) is a second- order staionary if 0 < o1 < 1 (Al-Osh and Alzaid,
1987, Du and Li, 1991). The probability generating function of the random variable X, #x,(s), is
given by Alzaid and Al-Osh(1988), ¢x,(s) = ¢x,(1 — a* + a's) [Ti=y ¢e(1 — a* — a*s), |s| <1,
where ¢.(s) is the probability generating function of €;. Since E(e1) < 00, the limit lim; o ¢x,(5)

exists and is the probability generating function of some random variable X, for which

¢x(s) = de(s)ox (1 — a + @3) (2)

(Alzaid and Al-Osh, 1988). Equation (2) is related to the definition of a self-decomposable distri-
bution on a set of non-negative integers as introduced by Steutel and Van Harn(1979). In fact,
assuming that the INAR(1) process is stationary, the probability generating function of X, satisfies
(2). Therefore, one can choose any member of the class of discrete self-decomposable distributions
as the marginal of a stationary INAR(1) process.

The INAR(p) process {X;}, a seemingly natural extension of the INAR(1) process, is defined

in the usual manner
Xt=C!1OXt—l+a20Xt_2+"'+ap0Xt_p+6t (3)

where

(a) {e:} is a sequence of i.i.d non-negative integer-valued random variables, with E(e;) =
e, Var(e,) = 02, E(e}) < o0
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(b) All counting series of a; 0 X¢—4,i = 1,---,p, {Yix},k =1,--+ , X;_; are mutually indepen-
dent, and independent of {e;}

(c)0<a;<l,i=1,--,p.

To ensure the stationarity of the process, Du and Li(1991) proved that all the roots of A? —
a1 AP~ — ...y ~ @p = 0 are inside the unit circle is the stationarity condition. The mean of the
process satisfies E(X;) = p./(1 — 3.F_, ;) and the autocorrelation function of the process is the

same as that of an AR(p).

3 Properties of predictor for INAR(1) process

In this section, we derive the prediction mean squared error of predictor for poisson INAR(1)
process. In the INAR(1) process, the Poisson distribution plays a role similar to that of the
Gaussian distribution in the AR(1) process. It has the property that if the innovation sequence
{€} and the initial distribution are poisson, the marginal distribution of {X:} is also poisson.
The most common procedure for constructing forecasts in time series models is to use conditional
expectations. The reason is that this technique will yield forecasts with minimum mean square
error. That is, given 8 = (61,02)' = (a, )’ and X = (z1,--+,z7)’, the minimum MSE forecast

of XT+h is XT+h = E(XT-H;,}-T)'

Theorem 3.1. Let {X,;} be a stationary process satisfying (1) where {€;} are i.i.d random vari-
ables, independent of {X.}, with poisson distribution with parameter A\. Then the PMSE of
Xrin = E(X7|Fr) is given by
2k
E[X7in — Xpi)? = Lll—:c‘;—)

Typically, the § = (61,82)' = («, )\)’ are not known, these parameters are estimated. The least
squares estimator of the §,’s, say 6;’s is often used and this leads to parameter estimates which
are asymptotically normal.

The estimated predictor is computed by replacing 6 by 6. The predictor of X1, with estimated

coefficients é, say XT+h is given by

XT+h = dhXT + A 11__(?; (4)
By Taylor expansion of (4) around 6= a,
Reon = o"Xp+X 11"_‘3:
+ (hah"lXT + /\_hah—l(—;izo::‘):- = ah) (¢ —a)

1-ah
1-—

+ (A = A) + remainder terms

We conventionally assume that statistical independent between the processes in estimation and
prediction. This independence assumptions are made in several papers about in usual pth-order
AR model(Bloomfield, 1972; Bhansali, 1974; Schmidt, 1974;Yamamoto, 1976)
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Theorem 3.2. Let {X;} be a stationary process satisfying (1) where {&;} are i.i.d random vari-
ables, independent of { X}, with poisson distribution with parameter A. Then the asymptotic mean

square error of Xpyp, is obtained as

E(Xr4n — Xr4n)?

1—
/\a(a/\+a—a2+)\)

- %E(hﬁ'a?(h-‘)x% +2haP  AXT + A2)
1(1—a")?a(X = X% + (X + 2%}

T (1—a)3A2
11—ca"
- 2= h=1xr + A)A?
Tl_aE(ha T+ AN (1+0)
1— a2t
+ l—-a
where
—haP 14+ hat +1—ah
A(hy M) = A i=ap ,
A AMA+1-a)
E = =" EX3)=2-"-_"7
(XT) H 1—a ( T) (l_a)z

4 Bootstrap forecast intervals for INAR(p) processes
Our proposal to obtain bootstrap prediction interval for INAR(p) process is as follows.

step 1 Compute the residuals: é; = X;— (81 X1+ +8pXs—p),t =p+1,--- ,n.,whereéy, -+ ,4;
are the least squares estimator. Notice that the right hand side of the above equation is the

difference between X; and estimate of its conditional expectation(up to missing term j. ).

step 2 Since each error é may be include a fractional part and even have a negative value, the
considered empirical distribution is that of the modified errors €; defined by
- [ét] 16 >0
€ = R
0 16, <0
where [-] represents the value rounded to the nearest integer. Define the empirical distribu-

tion function of the modified residuals:

n
Fiz)=(n-p)™" D lja<a)
t=p+1

step 3 Draw a i.i.d sample ¢} from the empirical distribution Fg(-)

step 4 Define X by the recursion :

P
for, t=1,2,...,n,Xt*=Zc‘v,~0X{_,.+et*

i=1
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step 5 Based on {X}, X3, -+, X+},T < n, compute the the estimation of the INAR(p) coeflicients

*

5), as in step 2.

@,...,a

step 6 Compute future bootstrap observations by the recursion:

P
* -~k * *
X4 = Zai X7 ih—i t€-

i=1
where h > 0, and X{ = X, fort <T.

The differences between our method and Alonso et al.(2002)’s method are step 2. In step 2,
the residual & is neither centered nor rescaled. Since the INAR(p) model includes the disturbance
term €; with mean g, which is not zero, a centering procedure for & is not needed in step 2.
Also, residual ¢, may include a fractional part, so we considered modified residual &. When we
omit step 5, the algorithm above is the conditional sieve bootstrap(CS) of Cao et al.(1997) and,
otherwise, it is the complete sieve bootstrap(VS). The main difference of CS from VS is step 5

which incorporate the variability due to parameter estimation.

5 Simulation results

In this section the results of a simulation study of the bootstrap prediction intervals are presented.
The true content of the intervals for finite samples is affected by parameter estimation method,
the nature of error distribution, and the form of the model. We limit attention to the following
model.
<modell. > X; =a10Xi_1+e¢ <model2. > Xy =a1o0Xi_1+aoXi—o+ €

The error distributions F, considered are the Poisson, Negative binomial distribution which has
small mean 3, 5, 10. Especially, when ¢; ~ Poisson()\), the marginal distribution of the INAR(1)
process is Poisson(A/(1 — a)). The Poisson error represents the equidispersed case, and Negative
binomial error represents overdispersed case.

Since the condition for stationarity for INAR(p) process is the same for AR(p)(Du and Li,
1991), we take o = 0.3,0.5,0.7 in model 1 and suitable combinations a;, ag in model 2.

We take sample size n = 25 and 50 , leads h = 1,2, 3,4, 5, and nominal coverage 1 — a = 0.95.

To compare the different prediction intervals, we use their mean coverage and length, the
proportions of observations lying out to the left and to the right of the interval and combined

measure of coverage and length. We do the followings.

1. Simulate a series of specified structure, length, and error distribution, and generate R = 1000

true future values X, from that series, using F, the true parameter values.

2. For each bootstrap procedure obtain the (1—a)% prediction interval [Q3,(c/2), Qs (1—a/2)]
based on B = 1000 bootstrap resamples.

3. The coverage for each method is estimated as
_ Q3 (0/2) < Xpyy < @3(1 - 0/2)}
R )
where X7, (r=1,2,--- , R) are the future values generated in the first step.
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In step 1, we get “empirical” interval lengths using Lt = Xgi(:‘_a/ 2 _ X;iah/ M and in step 2,
bootstrap interval lengths using Ly = [@3/(a/2), @}, (1 — a/2)].
Steps 1-3 are then repeated S = 200 times to get Cas,i, Lasyi, i = 1,- -+, S, and we get summary

measures:

S
Cu = D CumilS (5)
i=1

i s ) 1/2
SE@w) = [ (O Cu/(5(5 - )]

i=1

S
EM = ZLM"/S
i=1

5 ) 1/2
[Z(LW — La)/(S(S - 1))]

SE(Ly) =
i=1
CQm = |[1-Cum/Cr|+|1-Lnm/L1|
= s . . . ~ . .
where Lt = 3°;..; L1,i/S is the estimated true mean interval length, Cr = (1—a)% is the nominal
coverage.
Table 1: Monte Carlo results for model 1, with poisson errors mean 3 and a; = 0.3
Lead Sample size Method Cu (se) Cov (below/above) L (se) CQum
h n Theoretical 0.95 0.025/0.025 7.58 0
1 25 CS 0.95752(0.0030075) 0.004375/0.038105 7.775(0.0967921) 0.0336414
Vs 0.96687(0.0022903) 0.000315/0.032815 8.185(0.108224) 0.0975732
50 CS 0.97159 (0.001701) 0.003175/0.025235 7.9(0.0690932) 0.0704717
VS 0.974155 (0.0014179) 0.000865/0.02498 8.145(0.0800118) 0.105665
h n Theoretical 0.95 0.025/0.025 7.88 0
3 25 CS 0.94814 (0.0035168) 0.001005 /0.050855 7.915(0.1014412) 0.0063995
\'A 0.96519(0.0025576) 0.00065/0.03416 8.425 (0.0952219) 0.0851519
50 CS 0.968155 (0.0018225) 0.00087 /0.030975 8.26 (0.0677121) 0.0720105
\E 0.97258 (0.0015028) 0.00038 / 0.02704 8.445 (0.0678816) 0.1002503
h n Theoretical 0.95 0.025/0.025 7.88 0
5 25 CS 0.9492 (0.0037737) 0.00074 /0.05006 7.955 (0.1000747) 0.0103599
Vs 0.968515 (0.0023938) 0.00037 /0.031115 8.545 (0.090725) 0.1038803
50 CcSs 0.966385 (0.0019244) 0.00079 /0.032825 8.205 (0.0681033) 0.0591521
VS 0.97273 (0.0016255) 0.000465 /0.026805 8.49 (0.0657351) 0.1020216

Standard errors(SE) are in parentheses.

The below/above values give the ratio of the future values that fall below or above the interval (Cm =1 -below -above)

References

Al-Osh, M. A., and Alzaid, A. A. (1987), "First-order integer-valued autoregressive (INAR(1))
process,” Journal of Time Series Analysis, Vol. 8, No. 3, 261-275.

Alzaid, A. A., and Al-Osh, M. (1990), ”An integer-valued pth-order autoregressive structure
(INAR(p)) process,” Journal of Applied Probability, 27, 314-324.

Du, J.-Guan and Li, Y. (1991), ” The integer-valued autoregressive (INAR(p)) model,” Journal
of Time Series Analysis, 12, 129-142.

Sueutel, F. W., and Van Harn, K. (1979), "Discrete analogues of self-decomposability and sta-
bility,” Annals of Probability, 7, 893-899. -
- 164 -



ELRETRY

Stine, R. A. (1987), ”Estimating properties of autoregressive forecasts,” Journal of American

Statistical Association, 82, 1072-1078.

Thombs, L. A., and Schucany, W. R. (1990), ”Bootstrap prediction intervals for autoregression,”
Journal of American Statistical Association, 85, 486-492.

Alonso, A. M., Peiia, D., and Romo, J. (2002), "Forecasting time series with sieve bootstrap,”

Journal of Statistical Planning and Inference, 100, 1-11.
Bloomfield, P. (1972), ”On the error of prediction of a time series,” Biometrika, 59, 501-507.

Bhansali, R. J. (1974), ” Asymptotic mean-square error of predicting more than one-step ahead

using the regression method,” Journal of Applied Statistics, 23, 35-42.

Schmidt, P. (1974), " The asymptotic distribution of forecasts in the dynamic simulation of eco-

nomic model,” Econometrika, 42, 303-309.

Yamamoto, T. (1976), ” Asymptotic mean square prediction error for an autoregressive model

with estimated coefficients,” Journal of Applied Statistics, 25, 123-127.

Freeland, R. K., and McCabe, B. P. M. (2004),” Forecasting discrete valued low count time series,”
International Journal of Forecasting, 20, 427-434.

- 165 -



	GCGHA2_2005_y2005m11a-0168.tif
	GCGHA2_2005_y2005m11a-0169.tif
	GCGHA2_2005_y2005m11a-0170.tif
	GCGHA2_2005_y2005m11a-0171.tif
	GCGHA2_2005_y2005m11a-0172.tif
	GCGHA2_2005_y2005m11a-0173.tif
	GCGHA2_2005_y2005m11a-0174.tif

