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Abstract

This paper presents an autocorrelation test that is applicable to dynamic panel data
models with serially correlated errors. The residual-based GMM t-test is a significance
test that is applied after estimating a dynamic model by using the instrumental variable
(IV) method and is directly applicable to any other consistently estimated residuals.
Monte Carlo simulations show that the t-test has considerably more power than the mg
test or the Sargan test under both forms of serial correlation (i.e., AR(1) and MA(1)).
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1 Introduction

The main purpose of this paper is to propose a test of serial correlation for dynamic
panel models and to compare this test with the m2 and Sargan tests proposed by Arel-
lano and Bond (1991) (hereafter, AB). If the disturbance has an AR(1) structure, the
usual approach of using lagged values of the dependent variables as instruments in the
differenced equations, applied by, for example, Anderson and Hsiao (1981, 1982) and
Arellano and Bover (1995), is no longer valid. Furthermore, an estimator that uses lags
as instruments under the assumption of white noise errors is inconsistent if the distur-
bances are autocorrelated. Thus, the mo and Sargan tests are inapplicable because they
use inconsistently estimated residuals based on standard first-difference GMM estima-
tion (hereafter GMM), which also uses invalid instruments. To solve this problem, the
t-test utilizes consistently estimated residuals based on IV estimation that uses lags of
exogenous variables as instruments for the lagged dependent variables.

The remainder of this paper is organized as follows. In the next section, we present
the model and describe the performance of the mo and Sargan tests when the distur-
bances follow an AR(1) process. In Section 3, we propose a t-test for first-order serial
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correlation and show that the t-test is applicable to both forms of serial correlation (i.e.,
AR(1) or MA(1)). In Section 4, we present the simulation results.

2 Models of the Two Autocorrelation Tests Proposed by
AB (1991)
A simple dynamic panel model with strictly exogenous variables and with unobserved

individual-specific effects is an autoregressive specification of the following form (e.g.,
Nerlove, 1971a; Baltagi and Li, 1995):

Yo = Oyie—1 + 20+ ui, 6] < 1.
Uge = Ui+ Vit Wi~ NID(0,0‘z) 1)
where for i = 1,--- ,N and t = 2,--- ,T. We assume that p; and v;; have the familiar

one-way error component structure in which
E(pi) = E(vit) = E(pivit) =0 YV it (2)

Adopting the standard assumption that the classical error term, vit, is a white noise
error process, AB (1991) noted the validity of the following p = (T —1)(T —2)/2 linear
moment restrictions for the dynamic model (1) given by

E[(Ayit — 6AY;i¢-1)yiz—] =0 for (j=2,---,t-1; t=3, - ,T) (3)

where Ay;; = yit — ¥it—1. However, if the standard assumption of a white noise error for
vit is violated, these orthogonality conditions no longer hold. Hence, values of y lagged
two periods or more cannot be used as instruments for Ay; t—1. Consider two alternative
cases of serially correlated disturbances. First, consider the case of AR(1) stationary
disturbances in the classical error term, v;¢:

vie =prig-1+e  0<p<l (4)
Second, consider an invertible MA (1) disturbance:
Vit = €it + eﬁi,t—l 0<f<l1 (5)

where the innovations are independent over time and are homoskedastic; i.e., €; ~
i.i.d N(0,1). Since violation of the orthogonality conditions is expected to affect the m2
and Sargan tests, it is worth considering how these statistics behave when there is an
AR(1) error process. The consistency of the GMM estimator relies on E[AuiAu;z—o] =
0. Therefore, a test of the hypothesis that there is no second-order serial correlation in
the disturbances of the first-differenced equation takes the following form !

N ~
AD_,AD,

m2 = —1.)1/—2—"‘ N(0,1) (6)

1See AB (1991) for details.
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To focus on the effect of the AR(1) serial correlation on the numerator of (6) under
H; :0 < p <1, we obtain

E[AugAuii-g] = E[(vii —vit-1)(vit—2 — vit—3)]
2
a,
= Ze-m-m= g -2+,
-1
Mgg £0 (7)

p+1

where 7, is an autocovariance function of (vit) for a fixed i.2 Equation (7) shows that
the usual standard-normal asymptotic result in (6) cannot be used and that the power
of the test depends on p if the error follows an AR(1) process. The invalidity of the
orthogonality condition also affects the power of the Sargan test, as follows:

N -1
S=AVZ (Z Z;AaiAo;Zi) Z'AY~ X2y (8)
i—1

The effect of the autocorrelated errors on A%'Z in S can be succinctly expressed as
E[Ad}yip—s) = [p(p— D%, oo — )PV for s=2,---,t—1  (9)

Since the m2 and Sargan test statistics are functions of [p(p — 1)] and [p(p —1)}? respec-
tively, the power of these tests is expected to decrease as p approaches unity under the
AR(1) alternative.

Proposition 2.1 The power of the my and Sargan tests is mazimized at p = 0.5 and
approzimately p = 0.7, respectively, under the AR(1) alternative. Consequently, for
these tests, the probabilities of Type II errors increase as p approaches unity, which
suggests misspecification.

3 A Residual-based GMM ¢-test
3.1 The AR(1) Case

The poor performance of the two standard tests, the mq and the Sargan test, in the
presence of AR(1) disturbances motivates the discussion in this section. We consider
using GMM estimation to estimate the residuals, d;, to test whether the coefficient p
is significantly different from 0. Whether the unobserved disturbances, v;, follow an
AR(1) or an MA(1) process, the first-differenced disturbances in levels are

Aty = Uit — Ui -1 = Vit — Vig—1 = Avy

This simple relationship between u;; and v;; in first differences is useful for deriving our
t-test. In the case of an AR(1) disturbance, as in (4), the first-differenced equation is
Avit = pAvie1+ Aey (10)

2This equation equals 0 if the errors in the model in levels are not autocorrelated or if they follow a
random walk.
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When Avy; in the above equation is replaced with the first-differenced Au;;, equation (10)
is the same as AB’s (1991) AR(1) dynamic random-effects specification. Consequently,
we want to test Hy : p = 0 after obtaining the GMM estimator, p, and its f-value,
t5. Thus, the significance test for p in (10) is an autocorrelation test on the classical
error term in (1). To perform this test, Avy in (10) is replaced with the estimated
differenced residual, A, which is obtained from the first-step IV estimation. If we use
Ay = Auge — AX,':(S — §), we obtain

Aty = pAlig_1+ Aeyy — (AXy — pAXiz_1)(6 - 6)
= pAdijz-1+ Any say (11)

where X = (Yit—1, Tit) and é = (SIV, BIV)’. For T > 3, this new derived AR(1) dynamic
model (11) implies that the linear moment restrictions in vector form, E[W,;An] =
0, are satisfied, where 7; = (n;3---mir)’ and Wy; is a block diagonal matrix with an
sth block of (1 ---1is). The GMM estimator, p, is based on the sample moments
N1 Zfil W, An; and is given by

p= argminp(Anqu)VN(W;AU) (12)

'

where An = (An},--- ,Anly) and Wy, = (Wyq,-++,W,y). The one-step GMM esti-
mator, p, is obtained by setting Viy = (N1 Zfil W, ,GWy;)~1, where G is a (T — 2)-
dimensional square matrix with 2s on the main diagonal, —1s in the first subdiagonals
and 0s elsewhere.

Proposition 3.1 Under the null of Hy: p=0
by = Go(| MG WLV WiAG-) "} (A WV W.AG) ~ N1 (13)

The proof of asymptotic normality is quite straightforward and is therefore not
presented. However, it is worth noting that, unlike the my test, 3 the t-test does not
rely on the efficiency of the first-step estimator; i.e., 4. Although ‘avar(é — 6)’ appears
in the estimator of o, in (13), it disappears as N — oo because VN(S - 8) = 0p(1).

3.2 The MA(1) Case

In the previous section, we derived a ¢-test based on the residuals from IV estimation.
In this section, we show that the t-test is valid even if the classical error term in the
true disturbances follows an MA(1) process; i.e., vyt = e;t + fe;¢—1. As is conventional,
we use the mo test or the Sargan test to detect any serial correlation in the error term.
However, the MA(1) error can be converted to an AR(1) error to apply our ¢-test, as
follows:

Avyiy = Aey +0Ae;3
= OAvit_1 — 0?Avis g, ,+Aey

= 0Av;1+ Z —(=0)Y Avi s + Aeit (14)
=2
= 0Av; -1+ AGt (15)

3See Appendix A. in AB (1991) for details.
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where Ag;: = ;1_2 —(—H)j Av; s j+Ae;s. This equation is similar to the first-differenced
AR(1) specification in (10).* In the MA(1) case, the autocorrelation test case is again
a significance test on . Hence, the t-test can be applied after (15) has been estimated

by GMM to test whether 8 is significantly different from 0.

Proposition 3.2 The residual-based GMM t-test is applicable to both forms of serial
correlation, AR(1) and MA(1). Hence, under the null of Ho: 0 =0, t; ~ N(0.1).

However, a shortcoming of the test is that it may not be possible to distinguish
between the AR(1) and MA(1) structures if the null hypothesis that p = 0 is rejected.
In this case, we suggest a different testing strategy. First, use the t-test to determine
whether serial correlation is present. If it is, apply the mz or the Sargan test to determine
whether the error follows an MA(1) process. If it does not, conclude that the error term
has an AR(1) structure. This two-step testing procedure can detect any first-order serial
correlation structure in the error term of a dynamic panel data model.

4 Monte Carlo Experiments

To investigate how the three tests, the my test, the Sargan test and the t-test, perform
in practice, Monte Carlo simulations were conducted under the null hypotheses, p = 0
and # = 0. Following Nerlove (1971a) and Sevestre and Tronogon (1991), we assume
the following data-generating process:

Yit = OYit—1+ BTit + Uit
Tig = a1 twy  wi~ U(=1/2,1/2)
Ujt = i+ Vgt pi ~ N(0,1)

The classical error term, vy, is generated either by the AR(1) process (4) or by the MA(1)
process in (5). For z;1, we used w;1, and for y;1, we generate '?%} + iy + \/—l”ﬂTTé—. The
testing procedures were repeated five thousand times for each set of parameter values.
The parameter § takes the values 0.3,0.5,0.7 and 0.9 while 8 = 2, a = 0.4 remain fixed.
We choose the error process parameters, p and 6, so that p =0,0.1,---0.9.

First, the three tests were applied to AR(1) errors. Table 1 shows the size and power
of the three test statistics when there is an AR(1) error process . The empirical sizes of
the my test, the Sargan test and the ¢-test are reported in the first row for p = 0. The
tests have reasonable size properties except that the Sargan test rarely rejects the null.
Theoretically, the mgy test and the Sargan test are maximized at around p = 0.5 and
p = 0.7, respectively. This makes the conventional autocorrelation test difficult to apply
as p approaches unity because of the increased likelihood of a Type II error. The bias in
these two tests implies that the presence of serially correlated errors invalidates the use
of lagged values of y as instruments. Consequently, using lagged s as instruments biases
not only standard GMM estimation but also the two serial-correlation tests. However,
the t-test is unbiased and consistent because it uses consistently estimated residuals
from the IV estimation, which does not use lagged ys as instruments.

“The correlation between v;¢—; and (i becomes negligible as j increases.
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Table 1: Size and Power of the Three Tests ( AR(1) error )

6=0.3 0.5 0.7 0.9

p | m2 S t m2 S t m2 S t m2 S t

0.0 | 0.07 -0.01 0.06[0.02 0.01 0.05|002 001 0.06}002 0.03 0.04
01019 0.05 022014 0.05 030013 0.05 046 |0.18 0.03 0.17
0.2 ] 0.31 0.06 0.67]0.28 0.11 0.77 (028 0.12 0.84 025 0.09 0.68
03042 031 095|036 0.16 095|035 018 0.93 031 0.20 0.84
04043 031 099053 036 099052 036 0.99 (046 0.39 0.99
0.5 || 0.52 0.48 1.00 | 0.59 0.47 1.00]0.58 0.48 1.00|0.61 0.49 1.00
0.6 || 0.50 0.54 1.00 | 0.54 0.61 1.00]0.53 0.62 1.00|0.44 044 1.00
0.7 || 0.48 0.65 1.00 | 0.38 0.60 1.00|0.37 0.60 1.00 ( 0.36 0.32 1.00
0.8 || 0.39 0.57 1.00 {1 0.34 0.56 1.00|0.35 0.57 1.00(0.21 0.13 1.00
091011 040 1.00/(0.12 035 1.00{0.12 029 1.00}0.07 0.02 1.00

Notes: T = 7,N = 100. S and ¢ denote the Sargan test and the t-test, respectively.
Size-corrected powers in the AR(1) case for T = 7 and T' = 11 are available from the
author on request. The results remained unchanged.

Table 2: Size and Power of the Three Tests ( MA(1) error )

6=0.3 0.5 0.7 0.9

g m2 S t m2 S t m2 S t m2 S t

0.0 || 0.05 0.05 0.05]0.05 0.05 0.05]0.05 0.05 0.05]005 005 0.05
0.1 013 0.06 0.26 | 0.15 0.08 0.29|0.17 0.06 0.35]|0.19 0.05 0.39
0.2 035 0.11 0.67 1042 0.16 078|053 0.14 085|048 0.05 0.87
031073 0.29 0941083 049 098088 030 099|076 0.06 0.99
041 097 0.63 0.991099 0.84 1.00|098 043 1.000.88 0.06 1.00
0.5 || 1.00 0.91 1.00 | 1.00 0.99 1.000.99 052 1.00|0.90 0.07 1.00
0.6 | 1.00 0.99 1.00 | 1.00 1.00 1.00(1.00 0.59 1.00(0.87 0.06 1.00
0.7 | 1.00 1.00 1.00 | 1.00 1.00 1.00|1.00 0.67 1.00]0.82 0.07 0.99
0.8 || 1.00 1.00 1.00 1 1.00 1.00 1.00]1.00 0.74 1.00]0.77 0.07 0.99
0.9 || 1.00 1.00 1.00 | 1.00 1.00 1.00]1.00 0.78 1.00]0.73 0.07 0.99

Note: Sizes were corrected previously.
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We also applied the same three tests to MA(1) errors. To apply the ¢-test, the MA(1)
error process is approximated by an AR(1) process. Table 2 shows the size and power
of the three test statistics. Although there is no maximum value of the power, unlike
in the case of the AR(1) alternative, the m2 and Sargan tests have lower power than
the t-test. Note also that the size of the Sargan test becomes distorted as T increases.
The use of too many moment conditions dramatically reduces the size and power of the
Sargan test. This result confirms previous work by Bowsher (2002). Consequently, the
t-test is a useful alternative to the standard ms and Sargan tests because of its size and
power and its performance when T is large.
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