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Abstract

Many data sets obtained from surveys or medical trials often include missing ob-
servations. When these data sets are analyzed, it is general to use only complete cases.
However, it is possible to have big biases or involve inefficiency. In this paper, we
consider a method for estimating parameters in logistic linear models involving non-
ignorable missing data mechanism. A binomial response and normal exploratory model
for the missing data are used. We fit the model using the EM algorithm. The E-step
is derived by Metropolis-hastings algorithm to generate a sample for missing data and
Monte-carlo technique, and the M-step is by Newton-Raphson to maximize likelihood
function. Asymptotic variances of the MLE’s are derived and the standard error and
estimates of parameters are compared.

Keywords: EM algorithm, logistic linear models, missing data mechanism,maximum
likelihood estimation, non-ignorable missing data.

1 Introduction

Most of data sets which are obtained have missing data among observed data. When these
data sets are analyzed, it is general to use only complete cases with data all observed after
removing missing data. However, there are some problems, if the missing data is related
to values of the missing variables. It is possible to have big biases or involve inefficiency.
Therefore, we use robust statistical methods to consider these problems , Little and Ru-
bin(1987) proposes the missing data mechanism and Baker and Laird(1988) used the EM
algorithm to obtain maximum likelihood estimates.

In this paper, we have a method for estimating parameters in logistic linear models
involving non-ignorable missing data mechanism. We use a binomial response model and
normal model for the missing data. We fit the model using the EM algorithm. The E-step is
derived by Metropolis-hastings algorithm to generate a sample for missing data and Monte-
carlo technique, and the M-step is by Newton-Raphson to maximize likelihood function. We
estimate the logistic regression coefficients when the response and a covariate are missing
using the EM algorithm.

The rest of this paper is organized as follows. In section 2 we state notation and model.
In section 3 we derive the E and M steps of the EM algorithm. In section 4 we describe the
method how to estimate parameters. In section 5 we illustrate our results with one example
test.
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2 Notation and Model

Suppose that y,...,y, are independent observations, where each y; has a binomial distrib-
ution with sample size m; and success probability pi;. Let X; = (214, 2;)? is a 2 x 1 random
vector of covariates. x1; and zo; are independent observations and each covariates have
normal distribution with mean y; , g2 and variance o2, 03. Further, let 8¢ = (8o, 81, 82) is
regression coeflicients assuming to include intercept coefficient.

logit(m;) = X}

EXP{initﬂ}

T+ exp{X:B) M

p(yi | Xi,8) =

We assume that x,; is completely observed and y; and z2; particially missing,.
The missing data mechanism is defined as r; = 0 if y; is observed and s; = 0 if zy; is
observed so now we assume p(r;) = ¥, p(si) = ¢

logit(v:) = X! +yw
logit(¢;)) = Xla+wyr, ,i=12,...,n

The conditional probability for r; and s; is derived by equations (2) and (3).

exp{ri(X}é + yiw)}
] iy Y1y 6) = ; 2
p(ri | X, 9,6, 0) 1+ exp{X}d + yiw} @
o _ exp{si(Xfa +yir)}
p(sl | X'hyha;‘r) - 1 + exp{Xita + yiT} (3)
We derive the joint probability function as
(Y20, 76,8 | 1) = p(ri | vi, Xi, 6, w)p(s2i | yi, Xiy o, T)p(yi | Xi, B)p(z2i | T14)
exp{ri(X}d + yiw)} _ exp{s:i(X}a+yi7)} ta,.
1+ exp{ X! + yiw} % 1+ exp{Xta+y7} x exp{X; By}
(1 exp{XE) ™ x (2rod) ™2 x exp{ —ELHNy gy
2
Therefore, we can write down the complete-data log-likelihood by
n
exp{ri(Xi8 + yiw exp{si(Xja + yiT)}
log £(8 | v, X; = 1 '
0g£(6 |y, Xi,m, ) lz; og(l + exp{X}d + v w}) + Z g(1 + exp{Xfa+yi7}
+ ZX Byi — Zm, log(1 +exp{X}5}) - 103(27"02)
i=1 i=1
(11321
Z ot (5)

where 6 = (83, 6,w, a, T, uz,02) is the parameters related to develop EM algorithm.
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3 E-step and M-step of the EM algorithm

To compute maximum likelihood estimates in non-ignorable missing data, we use the ex-
pected log-likelihood. We consider the expectation in response variable y; is missing and
a covariate xg; is missing and both of them are missing. The expected log-likelihood for
E-step can be written by

E[l(ea Xi, YirTiy Si)] =
( 2;1120 1(6; X;,yi,riy 80)0(ys | Xiy 74, 5:)(if 4 has missing components.)

JUO; Xs, i, i, 8:)p(z2i | T14, Yi, Tiy $1)dT2i mis(if Z2; has missing components.)

oo JUO; Xiy iy i, 5:)p (i, T2d | T14, T, 8)d22i mis(if ¥i and zo; have missing components.)

L U85 Xy yi, 74, 85) (if T2;, y; are observed components.)

where I(6; X;,y;, 73, 8;) is complete-data log-likelihood log p(v:, X;,7:, 5;). Equation (5) leads
to the E-step for the ith observation as

n my
QO,0") = ZZ/wi(r)l(a;Xiyyi)ri’si)dx%,mis

i=19:=0
ni nz mi

= > U6 X, yi,ri,80) + >N U8 X i, s)pyi | Xiyriy 80,67)
i=1 i=ny41 ¥i=0
ns3

+ 2/1(9;Xi,yi,7‘i,$i):p($2i|$1i,yi,ri,si,6r)d12i,mis
n241
n my

+ Z Z /1(9;Xi»yi,ri,si)l’(yi,xzi | 214,74, 50" )d T2 mis. (6)
n3y1 ¥ =0

Where 0" is 7" iteration estimates, p(yi,mis | Xi, Ui,obs» i i) sD(Z2i,mis | Xi obs» Uir Tir i)
and p(Yi,misZ2i,miss | Xiobss Yi,obs T, S2;) are the conditional probability of the missing data
given the observed data and regarded as the weights. The weights have the form as

P(Yi,miss T2i,mis | Xiobs,Tiy 5i,67)
P(yi | Xi, 07)p(zo1 | 214)p(ri | vi, Xi, 67)p(si | yi, X5, 07)
o S P(yi | Xi,67)p(ma1 | m10)p(rs | yi, X3, 07)p(s: | ¥iy Xi, 67)
< p(Yi, 21,75, 8: | z14,07). (7)

p(~732i,mis I Xi,obs:yi:riysiyor)
p(z2: | £14,07)p(si | i, X5, 07)
S o(z2i | 214,67)p(s: | vi, Xi, 07

j o p(z2; | 21:,07)p(s:i | i, X, 67)

i(X} i i — 12)?
1 j—x:x{;{;()é:z;)"}_)} x (2n02)( - 1/2) x exp{—@2_2agﬂ_2)_}. ®)

P(Yi,mis | Xi,7i,8:,07)
p(yi | Xi,0")p(r; | yi, X;,07)
Soiop(yi | Xi,07)p(ri | yi, X,

0,.) X p(yl ' Xi’gr)p(ri I yiaXirar)' (9)
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To do E-step we need to generate a sample from weights function. For generation of equa-
tion (7), (8), (9) we use Metropolis-hastings algorithm. In the M-step, we maximize the
log-likelihood and estimate §"*! = (8,6,w,a, T, u2,03) converging. The Newton-Raphson
algorithm is often used to maximize function for linear model. The equations for para-
meters 871 = (B, 8,w, a, 7) in the M-step at the (r + 1)** EM iteration and the (¢ + 1)**
Newton-Raphson iteration take the form.

92Q(0,67), 7" 9Q(6,6")
_W) ><(—a‘ﬁ—') (10)

Iterating E-step and M-step, the (r + 1) step estimates of ™+ = (B,4,w,a, ) can be
obtained by these derivation.

ﬂr-{-l — ﬂr + (_

9 nl n2 n3
5562(0,9’) = Y xi'vi+ Y, E(xi'yi| Xobs,67) + > E(xi'yi | Xobs, ¥i,07)
i=1 i=n1+1 i=n2+1
n4 nl n2
+ 3 B(xiyi | Xobs,07) + D xi*mi — > E(xi*mi | Xobs,0")
i=n3+1 i=1 i=n1+1
n3 n
+ 3 E(xi*mi | Xobs, ¥ 07) + Y E(xi*mi | Xobs, 67)
i=n2+1 i=n3+1
82 nl n2
WQ(O’ M) = thﬂ'i(m —)x; + Z E(x:*mi(m — 1)x; | Xobs, 0")
=1 i=nl+1
n3 n
+ ) E(xitm(m — 1)%i | Xobs, ¥i,67) + > E(xtm(m — 1)xi | Xobs, 07)
i=n2+1 i=n3+1
(11)
where m; = exp{x;*8}/(1 + exp{xi*3}),
o nl n2
552007 = Soxti—wi)+ D E(xi(ri—%i) | Xobs, 0%)
i=1 i=nl+1
n3 n
+ 57 B(xb(ri— t) | Xovs, ¥, 07) + ) E((ri — ) | Xobs, 6")
i=n2+1 i=n3+1
62 nl n2
Faa5t @60 = Soxtrn(l-w)+ Y EGdriva(l —45) | Xobs,6")
i=1 j=n1+1
n3 n .
+ Y E(xfrii(1 — vi) | Xobs, ¥1,6%) + > E(frivi(l - vs) | Xobs, ")
i=n2+1 i=n3+1
(12)

nl n2
D000 = Yvi-wt Y B — ) Xowm0)

i=1 i=nl+1

n3 n
+ Z E(Y;(rl - 1/)1) | Xobs» Yis 0!‘) + Z E(yr(ri - "/)l) | xobsyer)

i=n2+1 i=n3+1
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5 a 2 _ae.r) - Zyir,w.(l h) + Z E(yirii(1 = %1) | Xobs, %)
w i=1 i=n1+1
n3 n4
+ > Eirti(l = i) | Xobs, ¥1,67) + Y E(yiTithi(1 = %) | Xobs, 67)
i=n2+1 i=n3+1
(13)
where 1; = exp{x}¢ + yiw}/(1 + exp{x}é + yiw}),
5 nl n2
296,67 = D xiGsi—¢)+ Y E(xi(si— i) | Xobs, ")
o i=1 i=n1l41
+ Z E(x ¢| Ixobsy)'n Z E(x Sj — ¢)Ixobs;0)
i=n2+1 i=n3+1
aaa 200 - sz.¢,(1 é1) + Z E(x{sii(1 ~ ¢i) | Xobs, 6")
i=1 i=nl+1
n3 n
+ > E(xtsigi(l—¢1) | Xobs,¥1,0") + > E(xtsidi(1 — ¢i) | Xobs, 67)
i=n241 i=n3+1
(14)
200,07 = Zy.(s. W+ S Bl — ) om0
i=nl+1
+ Z E(yt(si — i) | Xobs, ¥i,6" Z E(v(si — 1) | Xobs, 6")
i=n2+1 i=n3+1
2
663 n (0 01‘) = Zyisl¢l(1_¢i)+ E E(Y.Sl¢i(1 ¢|)|xobs;9)
i=n1+1
+ Z E(ylsl¢l(1_¢|)lxobmy” Z E(ylsl¢l(1_¢1)|xobs,9)
i=n2+1 i=n3+1
(15)

where ¢; = exp{x{a + yi7}/(1 + exp{xta + yi7}),

The (r + 1)°* estimates of ug, 02 are obtained to maximize the log-likelihood by solving
the first derivation.

Therefore, we take uj+! ag(rH) by

1
uptt = ﬁE(xzilwu,yiaTi’si) 1)

1
03(“’” = ;E((V;Zi—lm)zlei:yiyri;si) (7)
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4 Summary

We have proposed a method for estimating parameters in logistic linear models when the
response is missing or the covariate variable is missing. We used missing data mechanism to
avoid serious biases or inefficiency because of model without considering missing data. We
generated sample for missing data by Metropolis-hastings algorithm to compute weights.
For estimating parameters on the incomplete data set, EM algorithm is general to use.
Finding the incomplete data likelihood is quite difficult. Therefore, we compute E-step by the
expected log-likelihood and carry out the M-step for a EM iteration. If there is convergence,
then we repeat the method until convergence. A small-scale monte-carlo simulation study
to evaluate the performance of out proposed method will be presented at the conference.
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