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Nonparametric estimation of conditional Value-at-Risk

Seok-Oh Jeong! and Kee-Hoon Kang 2

1 The risk model

Consider a univariate asset price process (St)t=o,1,., which is typically a stock price or a foreign

exchange rate. Define the returns, (r4)t=1.2...., of (S;) by its log-returns:
ry = log Sy — log Sy—1.
Assume that this return process is of the form
Tt = 0t&¢ (1)

where o, is the predictable volatility process, and ¢; are independently and identically distributed
(IID) random variables having zero mean zero and unit variance. The volatility coefficient o, is

often considered as the square root of the conditional variance of the returns:

Utz = Var(rs|Fi—1). (2)

Under the conditional heteroscedasticity model in (1), (conditional) Value-at-Risk at level o is

defined by the value VaR, : which satisfies the following relation:
P(ry < VaRq i | Fi-1) = . (3)
Since o is assumed predictable, we may put
VaRq,: = 0tqa

where ¢, is the a-th quantile of the distribution of ;. Hence, as well as the accurate volatility
estimation, it is essential for obtaining the value of VaR to specify the distribution of the innovations

€; correctly.

When we think of o} as in (2), &;’s have unit variance. However, we don’t have to stick to this
normalization. In order to obtain properly standardized versions of ¢; and q,, one may simply
multiply o; and divide go by /Var(e;). Therefore there is nothing to be changed in the value of

VaR. Now we discuss the estimation of o; and g,.
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2 Local homogeneity model for volatility

Fix a time point 7. The local homogeneity of volatility process (o:) on a time interval I = {7 —m, 1)
means that o, varies little in ¢ on the interval I. Once the local homogeneity on I is proven, o2 can

be simply estimated by the average of the squared returns in the time interval I:

~2 2

Or = Z Tty (4)
This is basically a moving average with varying window size.

How can we determine whether an interval is the homogeneity interval or not? Mercurio and
Spokoiny (2004) provided a martingale deviation probability bound to test the homogeneity, but
it has a drawback that it is not tractable to control the level of test. We are to present another

approach which enables us to control the level of the homogeneity test but does not require such a

high-math.

Consider a power transform on r; to get a regression like model as in Mercurio and Spokoiny
(2004): for some v > 0,
el = o |et|” = 6: + 6:5,(:

where 0, = ¢,07, ¢t = d7 (lee]” — ¢y), ¢y = Ele|", dy = /Varlee| and s, = dy/cy. Under the
homogeneity of o; on an interval I, there is a constant trend 8; such that 6; = 6; holds for all t € I,
and we naturally estimate this constant trend by the average of |r¢|?’s in the interval I

~ 1

b= 2 Inl”

N

where Ny is the number of time points in the interval I. Then, under the homogeneity hypothesis

on the interval I, one may show that, for any subinterval J C I

6y — 51\J

T1y = -1 -1
Sty Ny~ + Ny

is approximately t(Ny — 2)-distributed, where t(n) denotes the t-distribution with degrees of freedom

n, and
) 1 ~\2 ~ \2
Str= =gy 2 (el =) + 2 (Inl - )
7 —
teJ ten\J
Note that, by construction, we have
0y =0y (1 + S—,C_I)
where {; = N;1'3,; G- It follows that
~\2 _

> (|7‘t|7 - 91) =672 (¢ —0)°

tel tel
Thus, under the homogeneity on the interval I, the distribution of test statistic T7,; does not depend

on §: - _
Cr—<Cny

Ty = [ar—1 -1
SC,],J NJ +NI\J
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where

=g | LG 0+ T (G- )

teJ tel\J
Since (;’s are iid random variables having zero mean and unit variance, one may execute t-test to

test the homogeneity using the statistic Ty ;.

Algorithm for the local homogeneity interval Fix mg > 1 and a > 0.

(Initialization] Set k= 1.
[Update] Set I ={r— (k+ 1)mg,7).

[Test] Compute T,y for all J € {[r — fmq,T)|£ =1,2,...,k}. If there is a subinterval J such
that |T7 5] > ta/(2x) (N1 — 2), then set /i = kmg and I =[r —m,7) and stop.

[Loop] Set k =k + 1 and goto [Update].

Note that tq/(2x) (N1 —2) is used for the critical value instead of t,/2(N7—2), which is the Bonferroni

correction for multiple tests in [Test] step.

3 Quantile estimation

Now we discuss the nonparametric estimation of quantiles. Consider a random sample X;,-- -, X,,.

Define the quantile function as, for & € (0,1)
Q(a) = inf{z| F(z) = a},

where F' is the (common) distribution function of X;’s. Let us assume that the quantile function

Q(a) is smooth in «. The empirical quantile estimator is

Qnla) = Xy, if(s-1)/n<a<s/n, s=1,...,n
= X(l)’ ifa= 0,
where X3y < .-+ £ X() is the order statistics of Xj,-++,, Xn. The kernel quantile estimator,

proposed by Parzen (1979), is given by

a@= [ 15 (5%) s,

where K is a kernel function, and A > 0 is a bandwidth. This estimator has been known to suffer
from a severe boundary problem, i.e. to be problematic when estimating extreme quantiles for « less
than h. Cheng and Peng (2002) tackled this problem by introducing the local quadratic regression

idea to the quantile estimation. They considered the minimizing problem with respect to a,b and

¢ of the weighted integral of squared error of a quadratic approximation to the empirical quantile

estimator @,

/01{Qn(s)—a—b(a—s)—c(a—s)2}2K(a;s>.
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The local quadratic estimator is then given by the value of a in the above solution, which has the

precise form

Ag(a)(a2a4 - a%) - Al(a)(ala4 - a2a3) + A2(O‘)(a1a3 - a%) (5)
ao(azays — a2) — ai(a1as — azaz) + az(ajaz — a3) ’

Q2(a) =

where a; = fol(a — 8)!K((a — s)/h)ds, and A;(a) = fol(a — 8} K((o — 8)/h)Qn(s)ds. The local
quandratic estimator (), is free of the boundary problem, and it gives a robust estimate over the

choice of the bandwidth A > 0.

4 Estimation of value-at-risk
Based on two pillars of the adaptive volatility estimation and the local quadratic quantile estimation,
now we can build the nonparametric estimator of VaR as follows:

VaRa,: = 61da- (6)

where &, is the volatility estimate in (4) and §, is the local quadratic quantile estimate in (5) from

the devolatilized returns & = r;/’s.

5 Empirical study: KOSPI

5.1 Data

Figure 1 depicts the series of daily KOSPI from January 03, 1990 to September 30, 2002 contain-
ing the economic crisis of South Korea in 1997. Its daily returns R; are given below the series,
which clearly shows the impact of the crisis in 1997. In Figure 2 we note the first two significant

autoregressive coefficients of KOSPI return process. Due to this market microstructure, we assume

AR(2)-model for R, as follows:

Ri=$ 1Ry 1+ ¢2Rp 2+ 1y,

Ty = O€¢.

The estimates of AR-coefficients are ¢; and ¢ are given in Table 1.

é1 $3
0.1031  -0.0549

Table 1: Autoregressive coefficients of KOSPI returns R;.
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Figure 1: The time series plots for KOSPI and its returns. Jan-03-1990 ~ Sep-30-2002.
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Figure 2: ACF plot for KOSPI returns R;.
5.2 Volatility estimation

In Figure 3 we show the time series plot of the residuals r; from the fitted AR(2)-model for R,
together with the estimated volatility coefficients §; of r; which were obtained according to the
proposed procedure. Hereafter we call r; the returns again. As expected, the proposed procedure

captured the abrupt changes in the volatility, i.e. the magnitude of the returns r; very well.
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Figure 3: KOSPI returns r; and the estimated volatility.

5.3 Devolatilized returns

Besides this feature on the volatility estimates, the devolatilized returns é; computed by r; /6 should
be iid if the proposed approach is reliable. In Figure 4 we plot the autoregressive coefficients for the
returns r and their squared value as well as for the devolatilized returns and the squared devolatilized
returns. There we see that the dependency structure in the squared returns are successfully filtered
by the proposed procedure. Furthermore, Figure 5 shows that the inhomogeneity in the return

process 7; has been removed successfully.

5.4 Value-at-Risk

Now the Value-at-Risk at time t of KOSPI data is estimated as follows:
\ﬁa,t = $1Ri_1 + $2Ri_2 + 61da

where §, is the estimated a-th quantile of the distribution of e;.
5.5 Backtesting VaR
By definition, a good VaR model should ensure that the proportion of the VaR violation is close to

its VaR level a. Let T be the total number of time points where VaR has been computed, and let

N be the number of VaR violations. Since IV is a binomial random variable under

Ho : E[N] = Ta,

- 204 -



B2, A&

Serles x Series x*2
2 a g
= ] o ]
=3 <
o | ©
o w o
& . g 5|
S °c
o o
-3 o
I b gl
S FIITTS Tl  EETEEEYTTRTT I o oo e e e R
T T T T T T T T T T T Y T T T T
[ 5 10 15 20 25 20 35 ° 5 10 15 20 25 3 35
Lag Lag
Series resid Series resid*2
o _{ e A
@ i <
S o
© | o |
' hd w d
2 < 2 <
o o
~ | N ]
o o
o RS ettt 1=9-- ¢ - IS SRl b Bl (A AL LA < S SR L LA L LA S L L L L L L L LY RS S R L
................................. T P R N L T I e SN e
T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 [ 5 10 15 20 25 k) 35
Lag Lag

Figure 4: ACF plots for KOSPI returns r; and the squared returns r? (upper two panels) and the
devolatilized returns é; = r,/d; and the squared devolatilized returns éf (lower panels).

one may consider the likelihood ratio test statistic given by
LR = -2log {(1-a)T"Na"} +2l0g {(1 - N/T)T-N(N/T)V}

which is asymptotically x%(1)-distributed under Hy, see Christoffersen (1998).

a N T N/T LR p-value

0.05 152 3039 0.05002 1.73170e-05 0.9967
0.01 29 3039 0.00954 0.06521  0.7984

Table 2: Backtesting results for KOSPI data.

- 205 -



Nonparametric estimation of conditional Value-at—Risk

s &1
2 -
)
51
T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
t
‘°_ -
2 9]
o
3 © o
]
©
[~]
2
T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
t
Figure 5: KOSPI returns r;, and the devolatilized returns r;/4;.
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