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Abstract

In this paper, we present analytic forms of the
ordered weighted averaging (OWA) operator weighting
functions, each of which has properties of rank-based
weights and a constant level of orness, irrespective of
the number of objectives considered. These analytic
forms provide significant advantages for generating
OWA weights over previously reported methods. First,
OWA weights can be efficiently generated by use of
proposed weighting functions without solving a
complicated mathematical program. Moreover, convex
combinations of these specific OWA operators can be
used to generate OWA operators with any predefined
values of orness once specific values of omess are a
priori stated by decision maker. Those weights have a
property of constant level of omess as well. Finally,
OWA weights generated at a predefined value of orness
make almost no numerical difference with maximum
entropy OWA weights in terms of dispersion.

1. Introduction

Yager [10] introduced the ordered weighted
averaging (OWA) operator to provide a method for
aggregating multiple inputs that lie between the max
and min operators. As the term ‘ordered’ implies, the
OWA operator pursues a nonlinear aggregation of
objects considered. In the short time since their first
appearance, the OWA operators have been used in an
astonishingly wide range of applications in the fields
including neural networks [12][13], database systems
[9], fuzzy logic controllers [11][15], a group decision
making with linguistic assessments [6], data mining [8]
and so on. The main reason for this is their great
flexibility to model a wide variety of aggregators, as
their nature is defined by a weighting vector, and not by
a single parameter [1]. By appropriately selecting the
weighting vector, we can model different kinds of
relationships between the criteria aggregated. Recently,
Xu and Da [l6] present a survey of the main
aggregation operators that encompass a broad range of
existing operators (more than 20 aggregators). It is
clear that actual results of aggregation performed by
OWA operators depend upon the forms of the weighting
vectors, which play a key role in aggregation process.
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Filev and Yager [3] present a way of obtaining the
weights associated with the OWA aggregation in the
situation when we have observed data on the arguments
and the aggregated value (see [2][4][5][7] for the
methods of determining OWA weights).

Another appealing point was the introduction of the
concept of ormess and the definition of an omess
measure that could establish how ‘orlike’ a certain
operator is. Thus the measure can be interpreted as the
mode of decision making by conferring the semantic
meaning to the weights used in aggregation process.
Moreover, Yager [10] used a measure of entropy to
gauge a degree of utilization of information in the sense
that each of weighting vectors considered can be
different to each other in terms of dispersion although
they have the same value in terms of omess.

In this paper, we present four analytic forms of OWA
operator weighting functions, each of which has
properties of rank-based weights and constant degree of
orness, irrespective of the number of objectives
considered. These analytic forms provide significant
advantages for generating OWA weights over
previously reported methods. These findings will be
validated by several theorems and corollaries in Section
2 and concluding remarks follow in Section 3.

2. Analytic forms of OWA operator weights with
constant level of orness and their properties

An OWA operator [10] of dimension 7 is a mapping
f. R™= R that has an associated weighting n vector
W=(wwy, - wa)'  such  that  we[0,1] for
iel={1,2,-,n}and Y,ew~1. Under this type of
operator the function value f determines the aggregated
value of arguments a;,a;,'**,a, in such a manner that
flay,az,,a,)=Yewib;, where b; is the ith largest
element in the collection, thus satisfying the relation
[10], Yager
introduced two characterizing measures associated with
weighting vector W of an OWA operator. The measure
of orness of the aggregation is defined as

ornexﬂW):;_l-_—lig(n-i)w,-

and it characterizes the degree to which the aggregation
is like an or operation. Furthermore Yager [10]
associates with any OWA vector W a measure of
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dispersion of entropy. The procedure for obtaining the
associated OWA weights then becomes that of solving a
mathematical programming problem which selects the
weights that have the maximum entropy (dispersion)
while satisfying the requirement on the optimism [7].
With regard to the measure of orness, we present, via
some theorems and corollaries, analytic forms of OWA
weights having constant level of orness.
Theorem 1: The omess of OWA weights in (1) is %
irrespective of n when n is referred to as the number of
objectives.

w=(1/n) i - (1)) (M
Proof:
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Corollary 1: The omess of OWA weights in (2) is Y
irrespective of n.

wi=(1/n) Yoy ;1/(n-j+1) (2)
Proof:

— i 1 1o n
orness _ - - —
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In general, the aggregated function values, applying the
formulas in (1) and (2), can be easily obtained as
follows: _
fav,az,,a)=(1n)(bi+(bi+by)/ 2+ +(by+++b,.)/(n-1)
+H(by+++++b,)/n) for (1) and
Rav,az,a,)=(Un)((by+ - +b,)/n
byt +b ) (n-1)+ - +(b,.+ b,)2+ b,) for (2).
Theorem 2: The omess of OWA weights in (3) is %
irrespective of n.

w(n-i+ 1) Yo p(nj+1)=2(n-i+1)/n(n+1) ?3)
Proof:

= 2n+1-4i)
n _ —_—
orness(W)= Z[(" e ] - l)n(n+l)

Z(n n+1-10)

= mz(u +n-@nen-iei?) . Applying an  equality

Z 2 _ nin+ l)(Zn + l)

i=
n(n? ”,)_(2,,4,1).M+ﬂm"—“))=l

orn =
eSS(W) (n- l)n(nu)[ 2 6 3"

Corollary 2: The omess of OWA weights in (4) is %
irrespective of n.

W=l Y i(ni+1)=2i/n(n+1) 6]
Proof: orness(W)——_z(o. - n(m)J m[n§, ‘}:l.]

- 2 (,I nn+l) m(r+DRr+D)_3
(n=Dn(n+1){ 2 6 3

In general, the aggregated function values, applying the
formulas in (3) and (4), can be easily obtained as
follows:

f(a|,(12,"',(1,,)= ZEIZ(n+1-i)'b,-/n(n+1)

=2((n+1) Yoe; b Yiesi*b;)/n(n+1) for (3) and

Aanay,  a)=Yie b 2iln(n+1))=2( Leji-b)/n(n+1) for
.

Theorem 3: If w;s for i€1 are any collection of OWA
weights having the property that w;2w; for i<j, then
omess 2 belongs to the interval 0.5<2 <. If w;s are any
collection of OWA weights having the property that
w; sw; for i<j, then 0 £2<0.5,

Proof: See the paper by Filev and Yager [2].

Remark 1: Let us denote by W(k) the OWA weighting
vector with a constant value of orness k and by w(k) the
ith element of W(k). The weights W(%) and W(%)
belonging to the interval 0.5<{ <l maintain the relation
w; 2w; for i<j. The weights W('4) and (') belonging to
the interval 0 2<0.5 also maintain the relation w;
for i<j. For the weights W(%), w(¥4)>w/(¥%) for i<j since
(1/1) Tei (1/R)>(1/8) Tijn(1/K) and for the weights
W(%), w{¥)>wi¥) for i<j since 2(n+1-i)n(n+1)>
2(n+1-j)/n(n+1). This can be proved for the cases of the
weights (') and W('5) in a similar way.

From the weighting functions in formulas (1) and (3), it
is conceived that the weights W(¥4) are steeper than the
weights W(3%5) when we plot object numbers and
corresponding weights in XY axis respectively. In other
words, the weights W(%) assign relatively greater
weights to preceding objects. To prove this conjecture,
we define Q4= Y=y 4w, where Q,=1 and Q; 20,.,.
Theorem 4: The weights W(%) are steeper than the
weights W(%). In other words, Qu%)>Qu%) for
k=23, - ,n, where Qu(¥4)= =1 ,w,;(%) and

OuA)= Y1 o).

Proof: For k=,

1 n- n-k
[XCAEDY “[ ”p] "[Zk T _zk:ﬂp] "[k+k - ) (Ink +|]
). et g, Thus, QUA>0,0%) holds.

n+l =1 n(n+1)

We can also prove a relation Qi(%4)>QuY%) for
k=2,3,***,n, analogously.

In what follows, we shall investigate the
characteristics of proposed OWA weights in terms of
dispersion which can be gauged by well-known entropy
measure disp(W)=- Y. w;Inw;. O’Hagan [7] determines
a special class of OWA operators having maximal
entropy of the OWA weights (MEOWA) for some
predefined value of omess. It is well-known that if a
weighting vector W is optimal under some predefined
value of omess q, then its reverse, denoted by W*, and
defined as w,»R=w,,_,-+| is also optimal under degree of
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<Table 1> Proposed Weighting Method when orness = 0.75

Proposed weights when ORN ESS=0.75

n wy W ws Wy ws We wy Wy ) Wio E

2 750 250 562
3 611 278 A1 901
4 521 271 146 063 1.148
5 457 257 157 090 040 1.343
6 408 242 158 103 061 .028 1.505
7 370 228 156 109 073 .044 020 1.644
8 340 215 152 A1 079 054 034 016 1.765
9 314 203 .148 11 083 061 042 026 012 1.873
10 293 .193 143 .110 085 065 048 034 021 010 1.970

<Table 2> Weights of Newly Generated Weights using Known End Points when orness = 0.7
end point (2/3, 3/4)

n W) w2 wa W ws We W ws Wy Wio E
2 700 300 611
3 544 31 144 974
4 448 288 178 .085 1.235
5 383 263 183 116 056 1.441
6 335 240 178 127 .082 .040 1.610
7 298 220 170 129 093 .061 .030 1.754
8 269 203 161 128 .098 072 047 023 1.880
9 246 .188 152 124 .100 078 057 037 018 1991
10 226 175 144 120 099 .080 063 046 .030 015 2.092

omness (1- o) and disp(W*)=disp(W). It is easy to show
that proposed weighting functions W(k) for k=%, ¥, %,
¥, satisfy this property as well though they are not ones
derived by maximal entropy method.

Then, our basic concern is that proposed weighting
functions W(k) for k=4, Y5, %, % lie in what level of
dispersion, compared to the weights generated by
maximal entropy method. This consideration can be set
forth by each comparison of MEOWA weights and the
weights by proposed method for a predefined value of
omess. In Table 1, the weights generated by MEOWA
and proposed method are listed when omess is set at
0.75. 1t is obvious that only small differences between
them exist at third decimal places of the numbers. This
holds true for MEOWA weights and proposed weights
when omess is fixed at 0.25, 0.667, and 0.334
respectively. The other concem we want to address falls
into a case that decision maker wants to make an
aggregation of objects at some other level of orness
except four specific levels of orness. To deal with this
situation, a way of determining OWA weights is
described below.

Theorem 5: A new OWA weighting vector having a
predefined and a constant value of omess can be
generated by a convex combination of any two OWA
weighting functions already known to have constant
level of omess.

Proof: If a predefined value of orness is k (0<k<1), let
us denote a newly generated OWA weighting vector as
W"*(k). The weights W"*(k) can be generated by a
convex combination of W(k') and W(k") which are the
OWA weighting functions having constant levels of
omess k' and k" respectively. Then the ith element of
WY(k) becomes w'= Bw (kY H1-B)w, k") for i€
and BE{0, 1]. We can always find out SBE[0, 1]
satisfying k=0k'+(1-8)-k". Then, applying the new
weights W'*¥(k) into omness measure, we obtain OWA
weights with a predefined and a constant value of
omess k.

orness(W*)=( Le (n-iyw"™)/(n-1)= Yie An-i)(Bwi(k') +
(1-Bwi(kK")/n-1)

=B Lie An-Dyw k) (n- D) H1-B) Le An-i)w,(k")/(n-1)=
Bk+(1-B)-k"=k.

Example. Suppose that we want to generate OWA
weights with orness 0.7 from the OWA weighting
vectors W(%) and (%), then we simply solve the
equation (2/3)8+(3/4)(1-6)=0.7, which results in 8=0.6.
Thus if n=3, newly generated OWA weighting vector
with orness=0.7 becomes
WY(0.7)=((0.6)(0.5)+(0.4)(0.611), (0.6)(0.333)
+(0.4)(0.278), (0.6)(0.167)+(0.4)(0.111))

= (0.544, 0.311, 0.145).

The omess of the newly generated weights is, of course,
orness(W"*(0.7))=0.7.
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Corollary 3: A convex combination of the weights
W(%s) and W(¥5) with 3=0.5 results in well-known OWA
average operator, W*"(Va)=(1/n,1/n, -, 1/n).

Proof:

wR=(112)w(@)H /2w (A)=2(n+1-))/2n(n+1)+
2i2n{n+1)=1/n.

The new OWA operator weights with a predefined
value of omess can be constructed by using known end
points of orness which encompass the predefined value
of omess. The difficult is, however, that there exist
many altematives to be chosen for end points. If we
want to generate new OWA operator weights with e.g.,
orness=0.7, then we can make not a few end points
which all make the weights locate at orness=0.7 by
varying parameter 8. For instance, the pairs of end
points such as (%, %), (4, %), (¥, %), and (*4, %) can
be chosen as one of the options, considering 3=0.6, 0.2,
0.12 and 0.1 respectively. Our consideration is that
which of them is the most appropriate to use in the
aggregation. As one of criteria to be considered, let us
suppose that we want to select newly generated weights
that result in a maximum entropy. In Table 2, we
present newly generated weights by convex
combinations of end points (%4, %) at orness=0.7. In
this case, only small differences can be found at third
decimal places of the numbers in all comparisons. The
OWA weights generated at a predefined value of omess
are expected to make almost no numerical difference
with MEOWA weights in terms of dispersion since
parameter (3 varying to maintain a predefined value of
omess smoothes the differences between them and thus
finally make their entropies close to each other.

3. Concluding remarks

We present analytic forms of OWA weighting
functions of which omess is constant irrespective of the
number of objectives. Further, using the analytic
weighting functions and well-known OWA operators
including max, min, and average, any new OWA
weights of which omess is also constant can be
generated on the omess scale.

Furthermore the values obtained via the formulas are
numerically close to those obtained by the MEOWA.
Thus in a situation where a priori degree of optimism is
specified by decision maker, we can simply apply the
analytic weighting functions or generate OWA weights
that have a predefined value of omess to perform
aggregation of multiple objects.
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