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ABSTRACT 
 
The objective on this project is to develop a cooperative Field Robot (FR), by using a customize Open Control Platform 
(OCP) as design and development process. An OCP is a CORBA-based solution for networked control system, which 
facilitates the transitioning of control designs to embedded targets. In order to achieve the cooperation surveillance system, 
two FRs are distributed by navigation messages (GPS and sensor data) using CORBA event-channel communication, while 
graphical information from IR night vision camera is distributed using CORBA Asynchronous Method Invocation (AMI). 
The QoS features of AMI in the network are to provide the additional delivery method for distributing an IR camera images 
will be evaluate in this experiment. In this paper also presents an empirical performance evaluation from the variable chunk 
sizes were compared with the number of clients and message latency, some of the measurement data’s are summarized in the 
following paragraph.  
In the AMI buffers size measurement, when the chuck sizes were change, the message latency is significantly change 
according to it frame size. The smaller frame size between 256 bytes to 512 bytes is more efficient for the message size 
below 2Mbytes, but it average performance in the large of message size a bigger frame size is more efficient. For the several 
destination, the same experiment using 512 bytes to 2 Mbytes frame with 2 to 5 destinations are presented. For the message 
size bigger than 2 Mbytes, the AMI are still able to meet requirement for more than 5 clients simultaneously  
 
Keywords: Field Robot, OCP, CORBA, AMI  
 
 
 

1. INTRODUCTION 
 
The hierarchical systems for autonomous Field Robot 
(FR) control systems with real-time communication 
capability, which are mission control station (MCS) to 
draws the mission planning, decision control algorithm, 
and maintain coordination of several type of FR have 
emerged as a topic of significant interest to controls 
community. The small FR type that possible 
implementation fitting in rucksack envelope,  provides by 
navigation system sensors for all weather, daylight and 
nigh vision, to performs for scout mission to search, 
detect, recognize the mines or targets, and communication 
relay1). Another type of FR for squad supporting mission 
with limited speed, mobility and heavy, but carrying large 
of supplies and equipments for weapon control system.2)  
 
The basic idea behind most of the current FR navigation 
system is uses the satellite navigation system to acquire 
their locations, combining with the environment 
information’s which are collected by their sensors to 
provide a representation of the surround environment to 
emerges the situation awareness 3). In the autonomous 
ground vehicles that use integrated GPS/INS systems, 
combining with sensor data to follow prescribed paths and 
to sense the environment around them4). One operates in 
smooth terrains, and the other is intended for cross-
country operation high-accuracy positioning for path 

guidance in the presence of large structures such as 
buildings, rocks and trees.5)  
 
In order for a multiple field robots to travel from one 
location to another’s, they have to aware the position and 
contiguity among them by exchanges the information 
using wireless local area network. The distributed dynamic 
host configuration protocol for nodes in a Mobile Ad-hoc 
Network (MANET) enables nodes to configure the 
network parameters of new nodes entering the network. 
Specifically to addressing the problem of assigning unique 
IP addresses to MANET nodes in the absence of a DHCP 
server.6)  
 
The middleware communication among several FR by 
exchanges the data or their system performance needs the 
rapid response times needed in a distributed network to 
support time critical calculation algorithm for joint 
missions. A mission base station will use the human level 
perceptual processing algorithm to acquire accurate and 
timely information to make time critical decision. 
Implementing this system, middleware communication 
requires state of the art real-time networked 
communication to shape and response to emerging 
situation rapidly. Remote object invocations to shared 
communication channels and publisher/subscriber 
communication to real time channels also were considered 
in many application.7) 
 



2. HARDWARE SYSTEM 
 
The significant advances in surveillance or reconnaissance 
over wide area could be substitute by the improvements of 
sensor technologies 8). In the figure 1 is illustrated our FR 
use an All Terrain Vehicle (ATV), it consist a IR camera 
manipulator, ultrasonic sensors for avoid a collision, 
sensor for heat and rotation of engine, steering and break 
system sensor, and GPS receiver are connected into PC 
interface terminal. 
 

 
 

Fig.1 Field Robot System 
 
The design methodology in this research is use the 
customize Open Control Platform (OCP) to integrating 
control technologies and resource, which is using 
Common Object Request Broker Architecture (CORBA) 
real-time distributed computer technology to coordinated 
distribute data, organize the interaction among 
hierarchically components, and to support dynamic 
reconfiguration of the components. In this paper we 
review the AMI CORBA as tools for supporting the 
graphical data exchange among several FR systems.   
 
During this research, the two simulators of FR systems 
and one Mission Control System (MCS) are prepared. In 
the each FR hardware system, the four CIC DC-Geared 
Motor (Model JC-35L/H-12) installed in each FR with a 
12-V nominal voltage was used as actuators in lieu of 
expensive. The IR Camera mechanical system needs a one 
motor driver for 360 degrees horizontal rotations, while 
each steering, engine and braking system needs one motor 
driver respectively. Each motor is driven by an H-Bridge 
power amplifier using 6 amperes complementary silicon 
transistor TIP41 and TIP42, were made by Mospec. It can 
deliver continuous power of 60W from each transistor 
within peak voltage of 100V. Motor drivers are drives 
using PC parallel port line with PWM output which 
generated by computer program for precise torque control. 
During initial testing, this motor drivers ware observed to 
produce high temperature in 12V, which can damage the 
power transistor as the main electronic components. 
Therefore, a resistor with higher resistance was used to 
clip the bias current caused by the optocoupler AN25, and 
a NAND gate 74LS00 was used to perform as inverting 
any PWM output from PC parallel port with the standard 
5V digital output.  
 
A four motor drivers are connected to the IEEE 1284 
standard parallel port use 25 pin female (DB25) connector 
(to which printer is connected). On almost all the PCs only 

one parallel port, but we can inserting additional ISA/PCI 
parallel port cards. The Status, Data, and Control lines are 
connected to there corresponding registers inside the 
computer. As a typical PC, the base address of LPT1 is 
0x378 (0x278 for LPT2). The Data register resides at this 
base address (0x378), Status register at base address + 1 = 
0x279 and the Control register is at base address + 2 = 
0x27a.   
 
The CPU runs the software that handles all hardware 
controls, TAO CORBA-based communication, and the 
filters for the IR camera signals. A PC-type Intel Pentium 
III-733MHz from Samsung (model M2761) was used as 
the FR central processing unit. It has 128MB of main 
memory, a 20GB hard disk, two serial ports, and one 
parallel port.  
 

 
 

Fig.2 FR System Middleware Interconnection 
 
The graphical information come from video device using 
the components that were used in the design and testing of 
the system were low cost commercial products that are 
readily available. An IR camera Asung ACM-7212DNC 
IR Led Dome CCD Camera along with a Video Capture 
Card was used to capture data for analysis via an USB 
interfacing to PC. This allowed the capture of PAL 
standard data, formatted for 640x480 captures at a frame 
rate of 25 frames per second. 
 
The FR communication modeling and simulation are 
developing and ongoing using wire LAN, complement to 
MANET. Simulation models of this FR are used, partly to 
ensure the performance throughout the development 
phase, in order to obtain the results that fully represent 
reality the models are constantly validated against the 
performed tests. 
 

3. SOFTWARE SYSTEM 
 
Two software applications were developed separately for 
both the field robot PCFR computers and the mission 
control system PCMCS of the overall system experiment, 
the PCFR runs the application for the decision control 
system and trajectories algorithm, while the PCMCS run the 
mission planning algorithm and performance analyze. 
 
The software applications are designing by customizes 
Open Control Platform (OCP) middleware structure as 



shown in figure bellow.  The OCP has its heritage in the 
CORBA-based and designed to support all levels of 
control development for Unmanned Aerial Vehicle (UAV) 
in Boeing. The major components of the OCP software 
include run-time framework and middleware, simulation 
environment, and tool integration. One goal of OCP is to 
bring middleware enabled software development to 
universal vehicle management-type processing.  
 

 
 

Fig. 3 OCP Development Process 
 
The OCP software infrastructure development as shows in 
the figure 3, for the PCFR is focused on trajectories, control 
algorithms, and reconfiguration system, then PCMCS latter 
is used to send start/stop commands for health monitoring 
and mission strategies, for post experiment is for data 
analysis and plotting. A remote PCFR1, PCFR2, and base 
station PCMCS computer communicate via LAN with 
standard Ethernet 10Mb of bandwidth.  
 

4. MIDDLEWARE STRUCTURE 
 
Middleware is software that provides a substrate through 
which software components can communicate with each 
other. It sits between the operating system and the 
application software and transparently handles low-level 
details generally required for data transfer between 
applications and over the network. Middleware can be 
used when the application software is located on the local 
processor or on a distributed computing system linking 
many processors across a network. A CORBA is a 
middleware software standard developed by a consortium 
called the Object Management Group (OMG). A basic 
feature of CORBA is the object request broker (ORB), 
which handles remote method calls.9)  
 

 
 

Fig.4 CORBA Distributed Communication. 

As depicted in the figure 4, when an object calls a method 
of another object distributed elsewhere on the network, the 
ORB intercepts the call and directs it. The client object 
does not need to know the location of the remote server 
object, a principle known as location transparency that 
greatly simplifies the programming of distributed 
applications. The way this works is that a programmer 
specifies an interface for each object using a standard 
interface definition language (IDL). These interfaces are 
compiled into what are referred to as client IDL stubs, 
which act as proxies for the actual objects, and server 
object IDL skeletons. All components are registered with 
and interact through the ORB. When a client object 
invokes a method it does so as if it is making a method 
call to a local object, but it is actually invoking it on a 
proxy that is the IDL stub. The method call goes through 
the ORB, which locates the server object. If the server 
object is remote, the ORB needs to send the request to the 
remote object’s ORB over the network. This involves 
marshalling the parameters, which means translating data 
values from their local representations to a common 
network protocol format, such as the Internet Inter-ORB 
Protocol (IIOP) standard defined by OMG.10)  
 
On the server object side, the parameters are de-marshaled 
and the method invocation is passed to the IDL skeleton, 
which invokes the method on the actual server object. The 
server returns the requested value in a similar fashion 
through the ORB. Note that the client does not have to be 
aware of where the server object is located, its 
programming language, its operating system, or any other 
system aspects that are not part of an object’s interface. 
 
The OCP provides an open, middleware-enabled software 
framework and development platform for controls 
technology. The customize OCP middleware applications 
are written in C++. It includes a real-time CORBA 
component which leverages the ACE and TA0 products 
developed by the Distributed Object Computing (DOC) 
research team at Washington University.11) TA0 provides 
some real-time performance extensions to CORBA. The 
Asynchronous Method Invocation (AMI) is one of the 
invocation methods in the Common Object Request 
Broker Architecture (CORBA) using Internet Inter-ORB 
Protocol (IIOP) to perform data objects exchange in the 
client/server application hierarchy 12). The AMI client 
application uses this service by sending the command to 
download the preferred graphical information for further 
processing. The AMI server response by sending several 
chunks of a message by iteration transfer simultaneously. 
The number of chunk is generated automatically according 
the amount in conjunction with AMI without requiring 
multiple threads. The basic design of the AMI programs is 
to allow both the client and the server is to other tasks 
without having to wait for a given task to complete. 
 
In this experiment, the CORBA Naming Service will use 
to bind and resolve and object reference dynamically, 
rather than using an Interoperable Object Reference (IOR) 
static file. Operations in the Interface Definition Language 
(IDL) will use exceptions to propagate problems back to 



the clients. In this chapter illustrates how to implement a 
simple client and server using CORBA, IIOP, and AMI. 
Client applications can use this service to download and 
display files from a CORBA server on the network13).   
 

 
 

Fig.5 IDL for AMI experiment 
 
The IDL structure for the experiment is shown in the 
figure 5. The client first activates its callback object, and 
then asynchronously registers a reference to its callback 
object with the server's iterate generator.  The iterate 
generator then creates an AMI reply callback handler for 
the requested file that asynchronously sends chunks of 
data to the client's callback object.  After creating and 
running the callback handler, the iterate generator returns 
the metadata containing the content type and modification 
date of the file to client.   
 
Since the callback was registered the iterate generator 
using AMI, an AMI reply handler called iterate handler on 
the client side will receive and handle the metadata 
returned from the iterate generator. The iterate handler 
then passes the received metadata to the callback object.  
The callback will spawn an external viewer once both the 
metadata and the entire file content have been received.  
The callback object is designed to correctly handle the 
case where the content is received before the metadata, 
and vice versa.  The core functionality as depicted in the 
figure 6 below: 
 

 
 

Fig.6 AMI Chunk Iterator 
 
Client applications will use an iterator in conjunction with 
AMI to download and display files from multiple CORBA 
server one chunk at a time simultaneously, without 
requiring multiple threads.  This design will help improve 
the memory management overhead on the client and 
server. In the server side it reads the name of the pathname 
the data want to download.  It then initializes the client-
side ORB and uses resolve initial reference to obtain a 
reference to a naming service. This object reference is then 
downcast via narrow function to an object reference for a 
naming context interface, which is then used to resolve the 
object reference that the server bound earlier.  After 

narrowing this to the Server interface, the get iterate 
operation is called via the object reference to obtain the 
chunk iterator, which is used to download the file. The 
client invokes the send next chunk method on the iterator, 
passing in the offset and the object reference to the client's 
reply handler. To relax this constraint would require some 
type of offset parameter to the next chunk callback to 
perform reassembly if chunks for the same file arrived out 
of order. 
           
When next chunk returns a chunk of the file, the contents 
are written into a temporary file created in on the local 
host.  Then, an external viewer is spawned to display the 
file.  The type of viewer to spawn is determined by 
examining the content type metadata returned by the 
server. The call back functionality of this program is as 
depicted in figure 7 below: 
 

 
 

Fig.7 AMI Call Back Functionality 
 
The figure 8 below is shows the monitor console of the 
AMI server in this experiment. The 4 different clients 
download the information from AMI server in standard 
chunk size of 512 bytes and every chunks have its a 
sequence number. 
 

 
 

Fig.8 CORBA AMI Console 
 

5. EXPERIMENTAL RESULT 
 
In conducting the experiments began with a single FR 
machine measurement of each of its system performance, 
sensors properties, and than moved to multiple FR 
machines connected with a CORBA network. With these 
experiments we have a various results, methods, and 
performances which are obtained on different 
classification. However only the most interesting subsets 
which are related to AMI are reported as shown in 
following figures, most of them are documented for the 



message latency and throughput of the network that 
effected by data sizes and number of clients.  
 

 
 

Fig.9 AMI Average Speed vs Message Size 
 
The first result shown in figure 9 is a comparison of the 
performance or speed of standard 10Mb Ethernet network. 
On average, the time needed to send a message of the 
specified size through the CORBA using Ethernet 
transaction took approximately 1000 kb/sec for the 
message above 50kbytes. The 512 bytes buffer size was 
chosen for system compatibility reason; however the 
message latency in small size of message is not efficient. 
 

 
 

Fig.10 AMI Maximum Throughput vs Message Size 
 
In the figure 10, the TCP throughput of the CORBA for 
the standard Ethernet network is nearly achieved their 
maximum theoretical throughput at 8 Mb/sec, or 80% of 
theoretical maximum speed of Ethernet. Because the CPU 
of the FR machine has enough speed to process any data 
transfer, and buffer size is also small size. 
 

 
 

Fig.11 AMI Message Latency vs Variable Chunk Sizes 

In the figure 11, since the AMI buffers size were change, 
the message latency is significantly change according to it 
frame size. The smaller frame size between 256 bytes to 
512 bytes is more efficient for the message size below 
2Mbytes, but it average performance in the large of 
message size a bigger frame size is more efficient. 
 
For the several destination, the same experiment using 512 
bytes frame with 2 to 5 destinations are shown in figure 
12. For the message size bigger than 2 Mbytes, the AMI 
are still able to meet requirement for more than 5 clients 
simultaneously, but the major revelation had not been 
discovered in this experiment, especially to uncover the 
effective programming parameters and number of clients 
that will be affected to the overall AMI performance 
significantly. This research program is an ongoing project 
in GN&C Laboratory while AMI is consider to send the 
large graphical information and CORBA event channel is 
consider distributing the navigation information over the 
network.   
 

 
 

Fig.12 AMI Message Latency vs Number of Clients 
 

 
6. CONCLUSIONS AND FUTURE WORKS 

 
A number of additional experiments and measurements 
could be conducted to further research in this area. First, 
the QoS features of the wireless network could be used to 
help providing additional assurances for timely delivery 
for distributing the navigation messages, scanned images, 
and real-time video information with variable chunk sizes. 
Second, by increasing the number of the destination than 
the network is heavily loaded could be performed to 
determine how the data routing distribution performs in 
the face of varying network congestion. And also AMI can 
help improving the scalability of CORBA applications by 
tuning the chunk size and minimizing the number of client 
threads required to perform two-way invocations.  
 
In previous section, we present empirical results that show 
how AMI implementation helps to increase application 
scalability to distribute the large graphical information, 
and we demonstrate the efficiency of the AMI 
implementation distinctly, by comparing message latency 
and throughput of AMI. However the major revelation had 
not been discovered in these experiment steps, especially 
to uncover the effective CORBA programming parameters 



according to the network parameters that will be affected 
to the overall AMI performance significantly. 
 

 
ACKNOWLEDGEMENT 

 
This work was supported by Grant 
No.(R0120030001043002004) from the Basic Research 
Program of the Korean Science & Engineering 
Foundation. 
 
 

REFERENCES 
 
[1]. Cang Ye, and Borenstein, J., A method for mobile 

robot navigation on rough terrain, Proceeding ICRA 
'04. Vol. 4 , April 26-May 1, 2004, p:3863- 3869.  

[2]. Fregene, K., Madhavan, R., and Kennedy, D., 
Coordinated control of multiple terrain mapping 
UGVs, Preceeding ICRA '04, Vol. 4, p:4210 – 4215.  

[3]. Anthony Stentz and Martial Hebert, A Complete 
Navigation System for Goal Acquisition in Unknown 
Environments, Autonomous Robots, Volume 2, 
Number 2, August 1995.  

[4]. S. A. Roth and S. Singh, Application of robust, high-
accuracy positioning for autonomous ground 
vehicles, AUVSI Unmanned Systems North America 
2004, August, 2004. 

[5]. Golda, D.,a Iagnenima, K., and Dubowsky, S., 
Probabilistic modeling and analysis of high-speed 
rough-terrain mobile robots, Proceeding ICRA '04. 
Volume: 1 , April 26-May 1, 2004, Pages:914 – 919. 

[6]. Sanket Nesargi, Ravi Prakash, MANET: 
Configuration of Hosts in a Mobile Ad Hoc Network, 
Proceedings of INFOCOM 2002.  

[7]. M. Mock and E. Nett , On the coordination of 
Autonomous Systems, 5th IEEE International 
Workshop on Object-Oriented Real-Time 
Dependable Systems, Monterey, 1999.  

[8]. Insop S., Karray F., Guedea, F., A Distributed real-
time system framework design for multi-robot 
cooperative systems using real-time Corba, IEEE 
International Symposium on Intelligent Control. 
2003, Pages:793 – 798. 

[9]. T. Samad and G. Balas, Software-Enabled Control: 
Information Technology for Dynamical Systems. 
John Wiley & Sons/IEEE Press, 2003.  

[10]. Object Management Group, CORBA Messaging 
Specification, OMG Document 98-05-05, May 1998. 

[11]. D. C. Schmidt, and S. Vinovski, Programming Asyn-
chronous Method Invocations with CORBA 
Messaging, C++ Report, SIGS, Vol. 11, Feb. 1999.  

[12]. Mayur Deshpande, Douglas C. Schmidt, Carlos 
O'Ryan, and Darrell Brunsch, The Design and 
Performance of Asynchronous Method Handling for 
CORBA, Proceedings of the Distributed Objects and 
Applications (DOA) conference, Irvine, Nov. 2002.  

[13]. Alexander B. Arulanthu, Carlos O'Ryan, Douglas C. 
Schmidt, Michael Kircher, and Jeff Parsons, The 
Design and Performance of a Scalable ORB 
Architecture for  CORBA Asynchronous Messaging, 
Proceedings of the IFIP/ACM Middleware 2000 
Conference, New York, April 3-7, 2000.  

 


	Text6: 384
	Text7: 385
	Text8: 386
	Text9: 387
	Text10: 388
	Text11: 389


