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ABSTRACT 
 
In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional 

damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. 
Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented 
by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to 
the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from 
the dynamic equations of the damaged cylindrical shell. In contrast with most existing SDIMs which require the modal pa-
rameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in damaged 
state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as 
needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage 
identification tests are conducted to study the feasibility of the present SDIM.  
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response function, FRF(주파수 응답) 
 

I. INTRODUCTION 
 
The oil or gas tanks, compressor shells, boilers and air-

plane fuselages are the typical examples of the application 
of the cylindrical shell structure. Because such cylindrical 
shell structures should be free from disastrous structural 
failures due to structural damages, it is very important to 
detect all significant structural damages in the very early 
stage of damage progression. In general, the structural 
damages change the vibration characteristics of a structure. 
Therefore, in turn, the damage-induced changes in vibra-
tion characteristics can be used to detect and identify the 
structural damages. In most existing vibration-based struc-
tural damage identification methods (SDIMs), the modal 
parameters such as natural frequencies, modal damping 
and mode shapes and the frequency response function 
(FRF)-data have been widely used . 

The SDIMs for cylindrical shells have been introduced 
by some researchers [1-2]. Srinivasan and Kot [5] proposed 
to use a damage index method for locating damage in circu-
lar cylindrical shells, which is basically based on the dam-
age-induced change in the modal strain energy of a struc-
ture. They derived an expression for the damage index that 
requires only the radial component of shell vibrations. Ip 
and Tse [1] presented a feasibility study on locating damage 
in circular cylindrical fiber-reinforced composite shells 
based on natural frequencies (frequency sensitivities) and 
mode shape information at specific locations. Very recently 
Kim et al. [2] developed an FRF-data based SDIM to iden-
tify the locations and magnitudes of multiple local damages 
within a cylindrical shell. They assumed that, as did in most 
existing SDIMs, the local damages were isotropic and they 
did not take into account the directivities (orientations) of 
local damages. This paper is the extension of Kim et al. [2] 
to add the capability to identify the directivities of local 
damages, i.e., directional local damages. 

The failure of most structural members involves general 
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degradation of elastic properties due to the localized nuclea-
tion and growth of damages (i.e., voids, cavities, or cracks of 
the size of crystal grains) and their ultimate coalescences into 
the larger size of material fracture. This implies that the di-
rectivities of local damages may control the direction of 
crack propagation within a structure member. Because the 
damage directivity plays a very important role to determine 
the failure pattern and the remaining life of a structure mem-
ber, it will be very important to identify the directivities of 
local damages as well, in addition to identifying their loca-
tions and severities (or magnitudes). However, to the authors’ 
best knowledge, the main concerns of most existing SDIMs 
have been limited to the identification of damage locations 
and severities only. Thus it is mandatory to develop an FRF-
based SDIM by which the directivities of local damages can 
be identified simultaneously: this motivates this work. 

From a physical standpoint, the surface of a material 
fracture can be considered as the continual propagation and 
coalescence of film-like small cracks. Thus, it may be perti-
nent to consider a local damage, which is film-like and uni-
form through the thickness of a thin-walled structure, as the 
equivalent line through-crack (simply, line crack). Based on 
the continuum damage mechanics, Lee et al. [3] showed that 
a SMV (small material volume) containing a line crack be-
haves effectively orthotropic, while a SMV containing a 
circular crack behaves effectively isotropic. They repre-
sented the material behavior of the SMV containing a line 
crack in terms of the effective orthotropic elastic stiffness, 
which is the function of the isotropic elastic stiffness, the 
crack size and the crack directivity. Thus, the damage-
induced change in local elastic stiffness from initially iso-
tropic to effectively orthotropic may indicate the existence 
of directional damages, rather than isotropic damages. This 
concept of continuum damage representation may provide a 
tool required to identify the directivities of local damages.  

First the dynamic equations of a damaged thin cylindri-
cal shell are derived by using the continuum damage repre-
sentation of a line crack-like local damage. The damage 
identification algorithm is then formulated from the fre-
quency response function directly solved from the dynamic 
equations of damaged thin cylindrical shell. The SDIM pro-
posed in this paper can be used to identify the directivities of 
multiple local damages as well, in addition to identifying 
their locations and severities. 

 
II. EQUATUINS OF MOTION FOR DAM-

AGED CYLINDRICAL SHELLS 
 
Consider an elastic, thin cylindrical shell. The shell has 

the radius R, the length L, and the thickness h as shown in 
Fig. 1. The intact shell material is isotropic and has Young’s 
modulus E and Poisson’s ratio ν. The x-axis is directed 
along the symmetry axis of the median shell surface, the y-
axis in the circumferential direction, and the z-direction 
along the interior normal of the meridian surface. Define 
the displacements in the longitudinal, circumferential and 
radial directions by u(x,θ, t), v(x,θ, t) and w(x,θ, t), respec-
tively, and also define the external loads in each direction 
by px(x,θ, t), py(x,θ, t) and pz(x,θ, t), respectively.  

The Effective elastic stiffness DQ with respect to the 
global coordinates (x,θ) for the small material volume con-
taining a line crack-like damage can be expressed as fol-
lows [3] : 

 QQ ∆−=DQ  (1) 

where 

( ) [ ] ( )De∆ ij φφ TQT ij
T=Q          (2) 

In Eq. (2), T(φ) is the coordinates transformation matrix , 
Q is the reduced elastic stiffness of intact isotropic solid, eij 
is the effective material directivity parameters, φ is the dam-
age orientation angle and D is the damage magnitude  

The equations of motion for a thin cylindrical shell sub-
ject to a small amplitude vibration are given by [2] 
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where the force resultants (Nx, Nθ, Nxθ) and the moment 
resultants (Mx, Mθ, Mxθ) are defined by 
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where  εx 0, εθ 0 and εxθ are the membrane strains, and χx, χθ 
and χxθ are the changes in curvatures. In Eq. (4), 

][ D
ij

D K=K  (i, j = 1, 2, 6) is the membrane stiffness for 
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the damaged cylindrical shell defined by  

( ) ( )θ∆θ ,, xxD KKK −=             (5) 

where K is the intact membrane stiffnesses (outside of 
SMV) defined by 
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and K∆ is the perturbed membrane stiffness  that  repre-
sents the effective degradation of the membrane stiffness 
due to the presence of the damage of magnitude D. 

( ) [ ] ( )Dehh ij φφ∆∆ TQTQK ij
T==         (7) 

By substituting Eq. (5) into Eq. (4) and substituting the 
results into Eq. (3), one may obtain the equations of motion 
for the damaged cylindrical shell in the form as  

[ ] ( ){ } ( ){ } ( ){ }txhtxtx ,,,,,, θρθθ ufuL &&=+   (8) 

In Eq (5), ][][][ DLLL +=  is the matrix of differential 
operators for the damaged cylindrical shells, [L] is the ma-
trix of differential operators for the intact cylindrical shells 
[2] and [LD] is the perturbed matrix of differential operators 
defined by 
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III. FORCED VIBRATION RESPONSES OF  
A DAMAGED CYLINDRICAL SHELL 

 
Assume that a harmonic load pz(x,θ,t) is applied at a 

point (xF , θ F) of a cylindrical shell, only in the direction 
normal to the surface of the cylindrical shell, the forced 
vibration responses of a damaged cylindrical shell can be 
assumed in the form 
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where {UI} = {UI  VI  WI }T (I = 1, 2, 3, ..., M) are the nor-
mal modes of the intact cylindrical shell, (xM, θ M ) represents 
the measurement point of the forced vibration responses. 
The matrix λ = [λIJ] is the damage influence matrix (DIM) 
which reflects the influence of damage defined by 
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{ } [ ]{ } θλ dxdJA D
T

IIJ UU∫= L          (12) 

Substituting the normal modes of a cylindrical shell 
simply supported at both ends into Eq. (12) than we can 
obtain the damage influence matrix as follows 

[ ] ( ) ( )∫==
A IJIJ dxdxx θθθλ ,, ΛMλ      (13) 

where MIJ (x,θ ) is the one by six matrix defined by 
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and In Eq. (13), Λ(x,θ ) is the six by one vector defined by 

( ) { }T
662622161211, KKKKKKx ∆∆∆∆∆∆θ =Λ (16) 

From Eq.(7), Eq. (13) gives the damage influence matrix λ as 
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IV. DAMAGE IDENTIFICATION THEORY 

 
In general, it is easier to measure the radial displace-

ment w(x,θ, t) rather than to measure the longitudinal dis-
placement u(x,θ, t) or circumferential displacement v(x,θ, t), 
the inertance FRF of w(x,θ, t) measured from a damaged 
cylindrical shell will be considered as the experimentally 
measured data required to identify the damages within a 
cylindrical shell. The inertance FRF is defined as the ratio 
of the acceleration to the applied force as  

( ) ( )
( ) ( )MM

FFz

MM
MM xW

txp
txwx θω

θ
θ

θω ,
,,
,,,; 2−==

&&
A  (19) 

where ),,( txw MM θ&&  is the radial acceleration measured at a 
point (xM, θ M ) and ),,( txp FFz θ  is the point force applied 
at a point (xF, θF) normal to the surface of a cylindrical 
shell. Applying the external load pz(xF, θF, t) and the radial 
displacement w(xM, θM, t) computed from Eq. (11) into Eq. 
(19) yields 

),;(),;(),;( MMMMMM
D xxx θω∆θωθω AAA += (20) 

where A is the inertance FRF measured from the intact 
cylindrical shell and ∆A is the perturbed inertance FRF due 
to the presence of damage. They are given by  

FMMM diagx ΨΨ ][),;( 22T2 ωΩωθω −−=A   (21) 

FMMMx ΨλΨ T2),;( ωθω∆ −=A               (22) 

where 
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Substituting Eq. (17) into Eq. (22) gives 
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Equation (23) provides the relationship between the 
damage information (i.e., damage magnitudes Dl and dam-
age orientations φl) and the damage-induced change in 
frequency response function (i.e., ∆A). Thus, once ∆A is 
experimentally measured from the damaged shell, Eq. (25) 
can be used to identify the unknown damage information. 

For a chosen set of excitation frequency (ω ) and meas-
urement point (xM, θM ), Eq. (23) provides an algebraic 
equation for unknown effective damage magnitudes Dl and 
damage orientations φl. Thus, by properly choosing as 
many different sets of (ω ; xM, θM ) as required, 2N for in-
stance, a set of simultaneous algebraic equations may be 
obtained in the form as 

A∆=DΦ)(X                 (26) 

where 
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and 
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Equation (26) represents the structural damage identifi-
cation algorithm developed in this paper for locating many 
line crack-like directional damages and also for identifying 
their severities (i.e., effective damage magnitudes) and 
orientations with respect to the reference coordinates. 

Equation (26) is non-linear equation with respect to un-
known damage magnitude D and damage orientation angle 
φ. In this paper, we can find the damage magnitude D and 
damage orientation angle φ in used Newton-Raphson 
method. 

 
V. NUMERICAL ILLUSTRATIONS AND 

DISCUSSIONS 
 
As an illustrative example, consider a cylindrical shell 

which is simply-supported at both ends. The cylindrical 
shell has the radius R = 0.125m, length L = 0.3m, thickness 
h = 0.003m, Young’s Modulus E = 206GPa, Poisson’s ratio 
ν = 0.33, and the mass density ρ = 7850kg/m3. 

First assume that the cylindrical shell has a line crack 
and investigate its effects on the natural frequencies of the 
cylindrical shell. The line crack is 0.015m long and it is 
centered at (xD, θD) = (0.135m, 0.9π ). To compute the effec-
tive elastic stiffnesses D

ijQ  for the SMV containing the line 
crack, the dimensions of the SMV are chosen as 

mx 3.02 =  and mR πθ 025.02 =  so that the effective 
damage magnitude becomes D = 0.3.  

Next, the numerically simulated damage identification 
tests are conducted to validate the present SDIM. Two exam-
ple problems are considered: (a) the shell with a line crack-
like damage (one-damage problem), and (b) the shell with 
three line crack-like damages (three-damage problem). The 
details of the line crack-like damages considered for two 
example problems are given in Table 1. The cylindrical shells 
are divided into 100 equal-sized finite segments, and the 
damage identification analyses are conducted to determine 
the effective damage magnitudes and orientations within all 
finite segments. A point harmonic force is applied at the point 
(xF = 0.15m, θF = π), and Eq. (20) is used to simulate the iner-
tance FRFs at each center of finite segments. 

Figures (a) and (b) show the damage identification re-
sults for the one-damage problem and the three-damage 
problem, respectively. The results shown in Figs. (a) and (b) 
are those sufficiently converged after 6 iterations for the 
one-damage problem and 25 iterations for the three-damage 
problem, respectively. One can clearly see from Figs. (a) 
and (b) that the present SDIM certainly has the capability to 
identify the directivities of multiple local damages, in addi-
tion to the capability to identify their locations and severities. 

 
VI. CONCLUSIONS 

 
In the present paper, the equations of motion for the 

thin uniform cylindrical shells with multiple line crack-like 
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directional damages are derived. A structural damage iden-
tification algorithm is then derived by using the frequency 
response functions (FRF) solved from the equations of 
motion. To provide the capability to identify the directiv-
ities of local damages as well, the local damages are con-
sidered as the line crack-like directional damages and they 
are represented by the effective orthotropic elastic stiffness 
based on a theory of continuum damage mechanics. As the 
result, the present SDIM can be used to identify the loca-
tions, severities, and the orientations of multiple local dam-
ages, all together at a time. The numerically simulated 
damage identification tests are conducted to evaluate the 
performance of the present FRF-based SDIM. The effects 
of any possible noises in the measured FRF-data on the 
damage identification results are also numerically tested. 
Experimental verifications will be provided in the next 
coming paper. 
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Table 1.  Damage information pre-specified for the 
damage identification tests 

Example 
problems 

Effective 
damage 

magnitude 

Damage 
orientation 
(degrees) 

Damage  
location 
(xD, θD) 

One-
damage 

(a) 
D = 0.3 φ = 30° (0.135m, 0.9π )

D1 = 0.3 φ1 = 0° (0.075m, 0.5π )
D2 = 0.4 φ2 = 30° (0.135m, 1.3π )

Three-
damage  

(b) D3 = 0.2 φ3 = 45° (0.225m, 0.9π )

 
 

 
Fig. (a)  Damage identification results for the one-

damage problem 

 
Fig. (b)  Damage identification results for the three-

damage problem 
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