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ABSTRACT 
 

In the literatures, the FFT-based SAM has been well applied to the computation of the steady-state responses of discrete 
dynamic systems. In this paper, a fast Fourier transforms (FFT)-based spectral analysis method (SAM) is proposed for the 
dynamic analysis of spectral element models subjected to the non-zero initial conditions. However, the FFT-based SAM has 
not yet been developed for the continuous systems represented by the spectral element model. 
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1.  INTRODUCTION 
 

By virtue of impressive progress in computer 
technologies during last three decades, there have been 
developed diverse computer-based numerical methods to 
obtain satisfactory approximate solutions for the discrete 
dynamic systems with a large degrees of freedom (DOFs). 
They may include various direct integration methods, the 
modal analysis methods, the discrete-time system methods, 
and the spectral analysis methods in which the FFT 
techniques are utilized. The first three are the time-domain 
methods [1, 2], while the FFT-based spectral analysis 
method (SAM) is a frequency-domain method [3-7]. 

In the FFT-based SAM for discrete dynamic systems, 
the dependent variables of a set of ordinary differential 
equations are transformed into the frequency-domain by 
using the discrete Fourier transforms (DFT) to transform 
the ordinary differential equations into a set of algebraic 
equations with frequency as a parameter. The algebraic 
equations are then solved for the Fourier (or spectral) 
components of dependent variables at each discrete 
frequency. As the final step, the time-domain responses are 

reconstructed from the Fourier components by using the 
inverse discrete Fourier transforms (IDFT). In practice, the 
FFT is used to conduct the DFT or IDFT. 
As the FFT is a remarkably efficient computer algorithm, it 
cannot only offer an enormous reduction in computer time 
but also increase the accuracy of solutions [4-6]. The FFT-
based SAM has been known to be very useful especially in 
the following situations [4-7]: (1) when the modern data 
acquisition systems are used, as in most experimental 
measurements, to store digitized data through the analogue-
to-digital converters, (2) when the excitation forces are so 
complicated that one has to use numerical integration to 
obtain the dynamic responses by using the excitation values 
at a discrete set of instants, (3) when it is significantly 
easier to measure the constitutive equation of a material in 
the frequency-domain rather than in the time-domain, and 
(4) when the frequency-dependent spectral finite element 
(or dynamic stiffness matrix) model is used for a structure. 

In the literatures [3-7], the FFT-based SAM has been 
well applied to the computation of the steady-state 
responses of discrete dynamic systems. The applications of 
the FFT-based SAM to the transient responses of dynamic 
systems have been limited to the cases when all initial 
conditions are zero. To take into account the nonzero initial 
conditions, Humar and Xia [9] and Veletsos and Ventura 
[10] introduced the DFT-based procedures for calculating 
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the transient response of a linear one DOF system from its 
corresponding steady-state response to a periodic extension 
of the excitation. The procedure involves the superposition 
of a corrective, free vibration solution which effectively 
transforms the steady-state response to the desired transient 
response. Mansur et al. [12, 13] used the pseudo-force 
concept to take into account the non-zero initial conditions 
in the DFT-based frequency-domain analysis of continuous 
media discretized by the FEM. The reference [12] solved 
the dynamic problem in the modal coordinates, whereas the 
reference [13] in both nodal and modal coordinates. 
Recently Lee at al. [14] and Cho and Lee [15] developed 
the FFT-based SAMs for the linear discrete dynamic 
systems subjected to non-zero initial conditions. To the 
authors’ best knowledge, the FFT-based SAM has not yet 
been developed for the continuous systems represented by 
the spectral element model. The readers may refer to 
references [4-6] for the spectral element models. 

Thus, the purpose of this paper is to develop an FFT-
based SAM for the linear spectral element models 
subjected to non-zero initial conditions. To evaluate the 
proposed FFT-based SAM, the forced vibration of a simply 
supported Bernoulli-Euler beam is considered as an 
illustrative problem. 
 

2. A BRIEF REVIEW ON DFT THEORY 
 

Because the theory of discrete Fourier transforms 
(DFT) is one of the key mathematical tools used to develop 
the present FFT-based SAM, a brief review on the DFT 
theory will be given in the following. A periodic function of 
time x(t), with the period T, can be always expressed as a 
Fourier series of the form 
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where i = 1− , ωn are the discrete frequencies defined by 
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and Xn are constant Fourier components given by 
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Equations (1) and (3) are the continuous Fourier transforms 
pair for a periodic function. 

Although x(t) is a continuous function of time, it is 
often the case that only sampled values of the function are 
available, in the form of a discrete time series {x(tr)}. If N 

is the number of samples, all equally spaced with a time 
interval equal to ∆ = T/N, the discrete time series are given 
by xr = x(tr), where tr = r∆ and r = 0, 1, 2, …, N − 1. The 
integral in Eq. (3) may be replaced approximately by the 
summation 
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which is the discrete Fourier transforms (DFT) of the 
discrete time series {xr}. Any typical value xr of the series 
{xr} can be given by the inverse formula 
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which is the inverse discrete Fourier transforms (IDFT). 
Thus, Eq. (4) and Eq. (5) represent the DFT-IFFT fair. Even 
though Eq. (4) is an approximation of Eq. (3), it is 
important to note that it allows all discrete time series {xr} 
to be regained exactly [7, 8]. The Fourier components Xn 
in Eq. (5) are arranged as *

nnN XX =−  (n = 0, 1, 2, …, N/2), 

where *
nX  represents the complex conjugate of nX . Note 

that XN/2 corresponds to the highest frequency ωN/2 = 
(N/2)ω1, which is called the Nyquist frequency. 

The fast Fourier transforms (FFT) is an ingenious 
highly efficient computer algorithm developed to perform 
the numerical operations required for a DFT or IDFT, 
reducing the computing time drastically by the order 
N/log2N. It should be pointed out that while the FFT-based 
spectral analysis uses a computer, it is not a numerical 
method in the usually sense, because the analytical 
descriptions of Eqs. (4) and (5) are still retained. Further 
details of DFT and FFT can be found in the reference [8]. 
  

3. SPECTRAL ELEMENT MODEL 
 

In the frequency-domain, the dynamics of a linear 
continuous structural system can be represented by the 
spectral element model or exact dynamic stiffness matrix 
model which is expressed in the matrix form as 

( ) FDS =ω     (6) 
where F  represents the magnitudes of the harmonic 
forces applied at the nodal points and D  represents the 
magnitudes of the corresponding frequency responses. The 
matrix S(ω) is the exact dynamic stiffness matrix for a 
whole system, which can be derived by assuming the 
harmonic solutions at a circular frequency ω as discussed in 
the following. 

As an example, consider the vibration of a uniform 
Bernoulli-Euler beam represented by 

0),(),( =+′′′′ txwAtxwIE &&ρ   (7) 
where w(x,t) is the transverse displacement, E is the 
Young’s modulus, A is the cross-sectional area, I is the area 



moment of inertia, and ρ is the mass density. In Eq. (7), the 
prime ( ′ ) and the dot ( ⋅ ) indicate the derivatives with 
respect to the axial coordinate x and the time t, respectively. 
The bending moment M(x, t) and the transverse shear force 
V(x, t) are related to the displacement field as 

( )
( ) ),(,

),(,
txwIEtxV

txwIEtxM
′′′−=

′′=
   (8) 

Assume the harmonic solution for Eq. (7) as 
( ) ( ) tiexwtxw ω=,    (9) 

Substitute Eq. (9) into Eq. (7) to obtain an ordinary 
differential equation as   

  0)()( 2 =−′′′′ xwAxwIE ωρ   (10) 

Assume the general solution of Eq. (10) as 
  ( ) xkeaxw =     (11) 

where k is the wavenumber and a is the constant coefficient. 
Substituting Eq. (11) into Eq. (10) yields a characteristic 
equation as 

044 =− βk     (12) 

where  
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From Eq. (12), we can compute four roots (i.e., 
wavenumbers) as 

ββ ikkkk =−==−= 4321 ,   (14) 

For a finite beam element of length l, the general solution 
of Eq. (10) can be then expressed as 
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The displacements and slopes at the nodal points of the 
finite beam element can be represented as 
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Substituting Eq. (15) into Eq. (17) gives 
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From Eq. (8), the magnitudes of harmonic bending 
moment and transverse shear force can be obtained from 
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Define the bending moments and transverse shear forces at 
nodal points as follows 
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Substituting Eqs. (15) and (19) into Eq. (20) gives 
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Eliminating the constants vector A from Eq. (18) and 
Eq. (21) gives 
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where s(ω) is the frequency-dependent dynamic stiffness 
matrix for the finite Bernoulli-Euler beam element of 
length l. If a structure consists of many finite elements, 
each finite elements represented by Eq. (22) can be 
assembled in a completely analogous way used in the 
conventional FEM to derive a global system equation in the 
form of Eq. (6). 

Since Eq. (6) is valid at any harmonic frequency, one 
may select the harmonic frequencies to be the discrete 
frequencies defined by Eq. (2). Then, at the nth discrete 
frequency ωn, for instance, Eq. (6) satisfies 

( ) nnn FDS =ω   or  nnn FDS =        (23) 

In the literatures [4-6], Sn, nD and nF  defined at discrete 
frequencies are often called the (assembled) spectral 
element matrix, the spectral nodal DOFs vector, and the 
spectral nodal forces vector, respectively. 
 

4.  DYNAMIC RESPONSE 
 

The time-domain dynamic response D(t) of Eq. (23) 
can be obtained by the sum of the steady–state response 
(particular solution) P(t) and the transient response 
(homogenous solution) H(t). 

( ) ( ) ( )ttt HPD +=    (24) 
By the use of DFT theory, the time-domain solution D(t) 
can be readily reconstructed from its spectra nD  (n = 0, 
1, …, N-1) as follows: 
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Hence, the goal here is to develop a methodology to 
compute nD .  

Assume that P(t) and H(t) can be expressed in the 
spectral forms as 
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From Eqs. (24-26), one can readily show the relation as 

nnn HPD +=     (27) 

 

4.1  Computation of steady-state response part  
 

For the given spectral nodal force vector nF (n = 0, 1, 

2,…, N-1), the spectra of particular solution part, nP , 
should satisfy 

nnn FPS =     (28) 

From Eq. (28), one can compute 
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where the symbol ( *  ) indicates the complex conjugate. 
The steady–state response in the time-domain can be 
reconstructed, by using FFT algorithm, from nP  (n = 0, 1, 
2,…, N-1) as follows: 
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From Eq. (26), the time derivative of P(t) can be obtained 
as 
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4.2 Computation of transient response part 
 

Without the external forces, Eq. (6) becomes 
( ) 0XS =ω     (33) 

which is an eigenvalue problem. One can compute the 
complex eigenvalues Ωj (j = 1, 2,…, ∞) from 

( ) 0det =jΩS                   (34) 

and the corresponding eigenvectors jX (j = 1, 2,…, ∞). 
Then the time-domain transient response H(t)  can be 
written as 
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where bj are constants. The time derivative of H(t) can be 
obtained from Eq. (35) as 
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Represent ( )tH and ( )tH&  into the spectral forms 
as 
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where, by the DFT theory, the Fourier spectra nH  and 

nH&  can be computed from 
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Substituting Eq. (35) and Eq. (36) into Eq. (38) gives 
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The constants bj  appeared in Eq. (35), Eq. (36), and 
Eq. (39) will be determined to satisfy the initial conditions 
given by 
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The total dynamic response determined from Eq. (24), 
should satisfy the initial conditions, Eq. (41). Thus, 
applying the initial conditions Eq. (41) into Eq. (24) gives 

( ) ( )
( ) ( )00

00

0

0

HPD

HPD
&&& +=

+=
   (42) 

Applying Eqs. (26a), (31) and (37) into Eq. (42) gives 
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Substituting Eq. (39) into Eq. (43) gives 
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Eq. (44) can be represented as 
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Equation (45) can be rewritten as 
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Since the vectors p and v in the right of Eq. (47) can be 
computed in advance from the initial values 0D and 0D& and 

the steady-state responses nP  and nP& , the unknown 

constants vector B can be solved from Eq. (47) by using a 
proper solution approach. (The solution approach will be 
further detailed in the final manuscript.) Once B is solved 
from Eq. (48), the transient response part can be then 
computed from Eq. (47), by using FFT, through Eq. (39). 
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APPENDIX 
 

The spectral element matrix of the Bernoulli-Euler 
beam, s(ω) is 
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and L is the length of beam. 
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