모터 전류 변화를 이용한 실리콘 웨이퍼 연삭 공정 모니터링 시스템

박선준*, 김성렬, 이성직, 박범영(부산대 대학원 정밀기계공학과), 정해도(부산대학교 기계공학부)

Monitoring System of Silicon Wafer Grinding Process
Using for the Change of Motor Current

H. D. Jeong (Mech. Dept. PNU)

ABSTRACT

Recently, according to the development of semiconductor industry, needed to high-integration and high-functionality. These changes are required for silicon wafer of large scale diameter and precision of TTV (Total Thickness variation). So, in this research, suggest that the method of monitoring system is using motor current. This method is needed for observation of silicon wafer grinding process. Motor current sensor is consisted of hall sensor. Hall sensor is known to catching of change of current. Received original signal is converted to the diginal, then, it is calculated RMS values, and then, it is analysed in computer. Generally, the change of force is relative to the change of current. So this reason, in this research tried to monitoring of motor current change, and then, it will be applied to analysis for silicon wafer grinding process using motor current sensor.

Key Words : Monitoring for Silicon Wafer Grinding(실리콘 웨이퍼 연삭 모니터링), Motor Current(모터 전류), Hall Sensor(홀 센서), Rough Grinding(사각), Fine Grinding(정각), Spark Out(스파크 아웃).

1. 서론

최근 반도체산업은 비약적인 발전을 거듭하여 각종 반도체 디바이스의 고집적화, 고가능화 하고 있는 추세이다. 그리고 이러한 추세의 변화는 기판 제료로 사용되고 있는 실리콘 웨이퍼의 평판도 사양을 보다 엄격하게 하였을 뿐만 아니라, 수율 줄을 위한 외적절화를 요구하게 되었다. 실리콘 웨이퍼가 대지경화 되면서 기존에 해결되었던 평판도 문제 또한 제기되어졌다. 웨이퍼가 대지경화 될에 따라 여건히 고정밀도 웨이퍼 요구되면서 평판도 규격도 엄격화 되고 있다. 이에 웨이퍼 연삭에 대한 평판도(TTV: Total Thickness Variation)에 대한 중요도가 부각되고 있는데, 본 연구에서는 실리콘 웨이퍼 연삭 공정 중에 발생하는 문제점을 모터 전류의 변화를 측정하여 모니터링 하고자 한다. 일반적으로 모터 전류 신호는 부하의 정도에 따라 다른 신호를 나타내게 된다. 이는 형의 변화에 따라 가공 중에 발생하는 부하가 몰리게 되고, 이 변화가 모터 전류의 변화로 나타나게 된다[2] 권원리에 착안하여 실리콘 웨이퍼 연삭 공정에 적용하고자 한다. 일반적으로 연삭 공정은 웨이퍼, 정각, 스파크 아웃의 단계로 구분 지을 수 있다. 실리콘 웨이퍼 연삭 공정 또한 이 3단계를 따른다. 실리콘 웨이퍼 연삭의 각 단계에 따라 모터에 들어오는 전류 신호가 변하게 되는데, 제작된 모터 전류 센서를 이용하여 웨이퍼 연삭 공정 중에 발생하는 모터 전류의 신호 변화를 모니터링하여, 실리콘 웨이퍼 연삭 공정 중에 발생하게 되는 이상 신호들을 감지하고자 한다. 또한 감지된 신호들을 분석하여 웨이퍼 연삭 공정 중에 발생하는 문제점을 개선시킬 수 있는 방향을 제시하고자 한다.
2. 모터 전류를 이용한 모니터링 시스템 구축

2.1 홀 센서를 이용한 모터 전류 센서 제작
본 연구에 사용된 모터 전류 센서는 홀센서를 이용하여 제작하였는데 이는 Fig. 1에 나타내었다. 우선 기관에 홀센서 4개를 부착한 후, 컴퓨터와 연결될 수 있도록 케이블로 부착하였다. 전압은 교류 전압을 5V 전압으로 변환하여 사용하였는데, 전압을 변환하기 위하여 전압 연결 단자를 설치하였다. 홀센서를 보면 가운데 부분이 비어 있는데, 이 부분에 모터로 들어가는 전력선을 위치시키면 전류의 변화가 있을 때 홀센서에 이를 감지하게 된다. 그래서 홀 센서 내부에 전력선이 한쪽 이상 감지되도록 하여 전류가 변화하는 것을 감지하도록 하였다. 홀센서를 보면 화살표가 있는데 전력선이 같은 방향으로 감지도록 하였다. 하드웨어, 반대로 감지되지 않으면 감지를 하는 신호의 부호가 반대로 나타나기 때문에, 일향한 모니터링을 위해서 화살표 방향으로 전력선을 위치시키도록 하였다.

Fig. 1 Picture of motor current sensor ; consist of hall sensor

2.2. 모니터링 시스템 구성
본 연구에 사용한 모니터링 시스템은 Fig. 2와 같다. 전체적인 구성은 신호를 획득할 수 있는 하드웨어 부분과 컴퓨터로 연결할 수 있는 부분으로 나눌 수 있다. 신호의 획득 방법은 다음과 같다. 우선, 웨어 연삭기를 주축 모터에 직접 연결되는 전력선을 끼어서 홀센서에 감는다. 일반적으로 주축 모터로 돌아가는 전력선은 u, v, w 순으로 구분된다. 전력선이 홀센서를 통과하면서 발생한 신호를 저항 분배 방법 (LPF : Low Pass Filter)를 통해 간직하게 된다. 간직된 신호의 전압을 다시 A/D Converter를 통해 디지털 신호로 변환된다. 변환된 디지털 신호는 컴퓨터로 저장되어지고, 저장된 신호로 모니터링을 하도록 구성되어있다. 본 연구에서는 원신호를 모니터링함과 동시에 이를 RMS(Root Mean Square) 값으로 변환하여 모니터링을 하였다.

Fig. 2 Schematic of monitoring system in silicon wafer grinding

3. 실험 방법 및 실험 결과

3.1 실험 방법
일반적으로 연삭 과정은 확정, 정착, 스파크 야기의 3단계로 구분된다. 본 연구에 사용된 원자하 지름의 3단계로 가공을 하게 된다. 본 연구에 사용된 실리콘 테이퍼 연삭기는 테이퍼을 얕게 연삭이기이다. 본 연삭기는 인피드 방식의 얕게 연삭 기로 300mm 대규모 테이퍼를 가공한다. 대규모 웨이판기 때문에 가공 공정중에 발생하게 되는 문제가 개선하게 되면 많은 기대 효과를 가져올 것으 로 기대된다. 그래서 모니터링 기술이 정확하게 부각될 필요성이 있다. 장비의 웨이판 가공 순서는 다음과 같다. 우선 웨이판은 180µm으로 가공을 하고, 정착기에는 120µm/min으로 가공을 하며 마지막으로 스파크 야기한 때는 60µm/min의 속도로 가공을 하게 된다. 이 때 가공 단계의 변화는 가공조건의 변화에 따라 변하게 되는데, 이 가공조건은 연삭 가공 시, 가공되는 테이퍼의 높이차에 따라 변하게 된다. 실리콘 웨이퍼의 높이차는 Height gauge를 이용하여 측정하는데, 가공 중에 측정을 계속 하기로 요구되는 높이차가 되면 가공 모터의 속도를 변화시키도록 지시하게 된다. 주어진 실리콘 웨이퍼는 880µm을 할 때까지 확각을 실시하고, 865µm에서 할 때까지 정각을 실시하고, 845µm에서 할 때까지 spark out을 실시한다. 본 연구에 사용된 장비는 얕게 연삭
기술의 문제에 따라 각각의 모터에 대해 측정을 실시하였다. 실험 조건은 Table. 1.에 나타내었다.

<table>
<thead>
<tr>
<th></th>
<th>Right motor</th>
<th>Left motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough grinding</td>
<td>180μm/min</td>
<td>180μm/min</td>
</tr>
<tr>
<td>Fine grinding</td>
<td>120μm/min</td>
<td>120μm/min</td>
</tr>
<tr>
<td>Spark out</td>
<td>60μm/min</td>
<td>60μm/min</td>
</tr>
</tbody>
</table>

Table. 1 Condition of experiments.

3.1.1 motor current를 이용한 모니터링
우선 모터로 전달되는 전류 값의 변화를 측정하기 위하여 실험에 제작한 실험기에서 제공된 모터에 직접 전달되는 u, v, w 전류를 측정하는 센서에 위치시킨다. 센서를 적용 전달되는 전력 전선을 환산하여 위치시키기는 이유는 노이즈를 최대한 줄여 정확한 신호를 획득하기 위해서이다. 그 다음, 측정 대상을 3가지 조건으로 나누어 측정을 했는데, 우선, 공회전시의 신호를 획득하고, 그 다음, 우각 각의 신호를 획득하였다. 측정 실시시간 간격은 공회전시에는 30sec으로 하여 측정하였고, 실제 실험 연속 가공 시에는 좌우 각의 신호를 각각 1sec으로 하여 측정하였다. 측정 간격은 1kHz로 하여 신호를 획득하였다.

3.2 실험 결과
본 연구에서 측정된 데이터는 원신호와 이를 RMS 값으로 변환한 것으로 구분하였다. Fig. 3은 측정된 값을 분석하기 쉽게 RMS 값으로 변환하여 도시화한 것이다. 우선 Fig. 3을 보면 기중 시 좌측 모터와 우측 모터의 전압변화 소폭에서 공회전 및 공작, 공작, 스파크 아웃의 단계별 경향성을 알 수가 있다. 공회전 시에는 1.0V에서 0.7V로 전압이 점차 감소하다가 좌측 공작 단계로 접어들면서 전압이 다시 1.0V 정도로 상승하게 된다. 공작 공정이 끝나고 공작 공정 단계로 접어들면서 전압이 1.25V 정도로 상승하다가, 다시 스파크 아웃 공정 단계로 접어들면서 전압이 0.7V로 하강하다가 다시 1.0V로 상승하는 규칙적인 사이클을 확인할 수 있다. 여기서 전압의 차는 정적인 값이 아니라 주기 속도가 변함에 따라 생기는 값이라 할 수 있다. 이는 실험에 제작된 실험기의 특성상 이상이 발생하게 되는, 이 사이클의 변화를 관찰할 수 있다. 본 결과에서 3개의 전력선에서 흘러나 한 신호를 나타내었 다. u선 외에도, v, w 선에서도 비슷한 경향을 보임을 알 수 있었다. 본 연구의 가정이 정상적인 연산공정을 받아들이려면 전류 신호가 비정상적으로 변할 것이라는 것에 기인할 수 있음과 비정상적인 신호가 나타나게 되면 문제가 발생할 수 있음을 알 수 있다. 또한 u, v, w 전력선 모두를 모니터링하게 되면 세가지 신호를 종합하여 좀 더 정밀한 데이터를 획득할 수 있다.

Fig. 4에서 측정된 원신호를 그대로 그래프로 나타내었다. (a)는 공회전시의 원신호를 나타내고 있고, (b)는 좌측 모터에서 나온 원신호를 나타내었고, (c)는 우측 모터에서 나온 원신호를 나타내었다. 신호의 파형을 보면, 가장순간에 따라 전압의 변화를 확인할 수 있다. 또한 그 파형값들은 RMS 값으로 변환시킨 그래프와 비교하여 유사한 경향을 보임을 알 수 있다. 그러나 데이터를 분석하기 전에 데이터가 높은 RMS 값으로 변환된 데이터를 활용하는 것이 좀 더 효율적이라고 판단하였다.

이상의 결과에서 볼 때, 실험에 제작한 연산공정 주변에 발생하는 문제점들을 모터 전류를 변환으로 분석하여 문제에 접근할 수 있게 되었다. 실험에 제작한 연산공정 주변에 발생하는 문제점들이 명확하게 하나로 규명이 어려지는 않았지만, 연산공정 주변에 발생하는 이상 신호들을 분석함으로써 공정 중 발생하는 문제점들을 전해할 수 있는 가능성을 충분히 확인하였다.

![Graph of RMS: Right motor, Left motor, Air-grinding](image)
4. 결론

본 연구에서는 실리콘 웨이퍼의 가공 공정 중에 발생하는 문제점을 발견하기 위하여 모터 전류를 이용한 모니터링 방법을 제안하였다. 일반적으로 모터에 부하되는 힘의 변화에 따라 모터에 들어오는 전류의 신호 또한 변한다는 원리에 입각하여, 실리콘 웨이퍼 연속기에 홀센서를 이용하여 제작한 모터 전류 센서를 장착하여 모니터링 하였다. 모니터링 결과, 모터에 부하되는 힘의 변화에 따라 모터 전류의 값 또한 변하게 됐을 확인할 수 있었다. 또한 실리콘 웨이퍼 연속 공정 사이클의 과정을 확인하고, 또한 이 과정과 일치하지 않는 이상 신호가 발생할 때 문제점이 생긴다는 것을 확인하였다. 실리콘 웨이퍼 연속 공정 시에 발생하는 문제점의 원인을 명확히 구분되어 있는지, 본 연구에서 확인된 실리콘 웨이퍼 연속 공정 사이클과 다른 신호가 발견되면 문제점을 발견할 수는 있음을 확인하였다. 향후, 모터 전류를 이용한 모니터링 이외에도 실리콘 웨이퍼 연속 공정 모니터링 방안을 모색할 필요성이 있다.

참고문헌

1. 김화영, “모터전류신호를 이용한 드릴공정의 가공 상태 감시”, 공학박사 학위논문, 부산대학교, pp. 36-41, 1995. 08
3. 김식호, “연속 사이클의 공정 외부 상황 감시 및 키어 시스템,” 공학박사 학위논문, 부산대학교, pp. 102-109, 1997. 02