CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가

김병화(강원대 기계메카트로닉스공학부), 최종필(강원대 기계메카트로닉스공학과), 전병희(인더컴퓨터응용실재공)

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics


ABSTRACT

In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD).

Key Words : Gas diffusion layer(기체 확산층), Proton exchange membrane fuel cell(고분자전해질 연료전지), Computational fluid dynamics(전산유체역학), Carbon Paper/Cloth(단소종이/단소천), 기공도(Porosity)

1. 서론

전기차의 시장이 증대됨에 따라 이것에 작용해 사용될 수 있는 이론 및 비상용 전진의 필요성이 증가하고 있다. 특히 휴대성은 용이한 노트북에 대한 수요가 증가함에 따라, 기존의 이차전지가 가지고 있는 적은 용량, 긴 충전시간, 높은 수명, 폐기시의 환해 유발 등과 같은 여러 문제점들이 인해 새로운 전진에 대한 요구와 관심이 증가되고 있다[1-3]. 이러한 요구에 협력하여 최근 연료전지는 차세대 전력 전진으로 세계적인 관심을 끌어올리고 있다. 연료전지는 전기화학 반응에 의해 연료가 가지고 있는 화학에너지지를 직접 전기에너지로 변환시키는 전기화학 장치로서 기존의 다른 발전장치들에 비해 효율이 높고, 소음 및 유해 배기가스 등에 대한 문제점이 적은 장점을 가지고 있다. 또한 수소와 산소의 촉매에 의한 전기화학반응으로 전기를 생산하기 때문에 수명이 길고 취급이 간단하여 쉽게 연료를 얻을 수 있다.

특히, 고분자전해질 연료전지는 높은 출력 밀도, 낮은 작동 온도, 짧은 작동시간 및 우수한 부하제향성을 지니고 있다. 또한 고분자전해질을 사용하기 때문에 부식저항성이 높고, 구조가 단순하며, 높은 반복작동 안전성을 지니고 있어 기존 배터리의 대체 전진으로서 높은 평가를 받고 있다. 연료전자가 수수립 화환의 혼합, 소형 환기 전진으로서 기존의 배터리 기술과 경쟁하기 위해서는 기법과, 크기가 매우 작아야 하며, 효율적 연료 공급을 통한 연료 손실을 최소화 시켜야 한다[4-6].

본 논문에서는 촉매층의 지지체 역할뿐만 아니라 전극으로 통합되는 반응물질이 이하한 반응면적으로 확산시키는 기체 확산층(GDL)의 CFD 해석을 통해 그 특성 파악 및 성능 개선을 위한 연구를 수행하였다. 기체 확산층을 포함한 유입 형상을 2 차원으로 모델링하고, 기체 확산층의 두께와 기공도의 차이 및 유입의 환상 변화에 따른 기체확산의 특성 해석을 수행하였다.
2. 고분자전해질 연료전지

2.1 동작원리 및 단위전지
고분자전해질 연료전지의 발전 원리는 양극(Aiode)에 공급된 수소가 폭발 상태에서 수소이온(H+)과 전자를(+)로 분해된다. 분해된 수소이온은 전해질막을 통해 음극(Cathode)으로 이동하며, 전자는 외부 전선을 통해 유리를 이동한다. 유리는 수소이온과 수소이온과 수소이온의 합산 상태에서 반응하여 물을 생성한다. 

Fig. 1은 고분자전해질 연료전지의 내부 구조도 및 전기화학반응을 보여주고 있다. 고분자전해질 연료전지의 집전판(bipolar plate), 기체 확산층, 전극, 전해질막으로 구성된다. 고분자전해질 연료전지의 성능은 MEA(membrane and electrolyte assembly)에 의해 크게 좌우된다.

2.2 기체 확산층
기체 확산층은 연료전지의 성능에 영향을 미치는 요인들 중 하나로 MEA의 성능에 상당히 큰 영향을 준다. 기체 확산층은 반응물과 생물물의 투과, 열 및 전기 전도, 물질 전달 등 전극 내에서 여리 가지 역할을 수행한다. 대부분의 고분자전해질 연료전지에서는 대체로 탄소종이나 탄소전을 기체 확산층의 재료로 사용한다. Fig. 2에 탄소종주기와 탄소전의 SEM 사진을 보여주고 있다. 탄소 재질은 높은 가공도(porosity)와 우수한 전기 전도도를 가지고 있다. 또한 기체 확산층을 대포로 만드는 처리함으로써 수지의 퍼자기가 용이하므로 동시에 MEA와의 결합 특성을 증가시킬 수 있다.

3. 유로 및 기체확산층 모델링

3.1 유로의 2 차원 형상 모델링
집전관을 통해 공급된 수소는 구복구분한 유로를 통하여 기체화합물에 직접 접해있는 기체로 전극으로 연료가 공급되며 나타난다[7].

Fig. 3은 3 차원 유로 형상과 기체 확산층의 모델을 보여주고 있다. 이러한 3 차원 형상의 해석은 복잡한 모델로 인해 해석이 어렵고 많은 소요 시간이 필요하다. 따라서 본 논문에서는 유로의 길이방향 형상과 수직방향의 간단한 2 차원 형상으로 분리하여 해석을 수행하였다. Fig. 4는 2 차원 형상으로 분리된 유로 형상이다.

Fig. 3 3 dimensional flow field

Fig. 4 2 dimensional decoupled flow field

3.2 기체 확산층의 모델링
기체 확산층의 가장 큰 특징은 가공도에 있다. 이 가공도를 통하여 기체를 균일하게 전극으로 전달하게 된다. 또한 기체 확산층 내부 유로의 토LOBAL(tortuosity)을 고려하여 모델링을 수행하였다[8]. 토LOBAL의 값은 Brugman 모델을 적용하여 1.5의 값으로 사용하였다. 해석에 사용된 기체형상은 볼륨 혹은 버드 볼륨(W0)과 랜드 볼륨(W0)이 모두 1mm이며, 가공도는 0.63, 두께는 300μm, 습도 50%의 상태로 해석을 수행하였다. 해석에 고려되어진 기체 확산층의 재질은 카본종이이다.
4. 결과 및 고찰

4.1 유로의 길이에 따른 확산속도와 압력

연료전지의 성능을 향상시키기 위해서는 전 유로 영역에 걸쳐 일정한 압력 및 속도로 연료가 공급되어야 한다. 그러나 유로 내부의 압력 차와 유로의 길이에 따른 저항의 발생으로 인하여 기체의 호흡 방향으로 공급되어지는 연료의 확산 속도 및 압력이 점차적으로 줄어든 현상을 확인하였다.

Fig. 5와 Fig. 6은 각각 유로 형상의 각이 방향에 따른 확산속도 감소 및 압력 저하를 보여주고 있다.

확산은 거의 일어나지 않으며, 두께가 너무 두꺼운 경우는 확산이 잘 이루어지지 않거나 극한의 속도의 저하를 가져온다. 본 해석을 통하여 200-300μm 두께의 기체 확산층이 가장 좋은 확산의 특성을 나타낼 수 확인되었다.

4.2 두께에 따른 확산속도

연료 공급의 균일성을 유지하기 위해서는 연료의 호흡을 방해하는 저항 요소들의 제거와 형상의 변화를 수행하여야 한다. 기체 확산층은 연료의 균일한 확산을 훼치지 않도록 하는 요인으로 작용할 수 있다. 이러한 방해 요인을 제거하기 위하여 기체 확산층의 두께 변화에 따른 확산 속도에 대하여 해석을 수행하였다.

Fig. 7은 기체 확산층의 두께 변화에 따른 유로의 수직방향의 확산 현상을, Fig. 8은 두께에 따른 확산속도를 나타내고 있다. 두께가 너무 많은 경우

Fig. 7 Distribution of gas for various GDL thickness

Fig. 8 Distribution velocity for various GDL thickness
4.4 유로 형성에 따른 확산속도

유로의 랜드 폭(WL)의 형상 변화를 통한 기체의 확산 특성을 파악하였다. 전체적으로 랜드 폭이 좁은 형상이 유로간의 간섭형상으로 많은 확산 현상을 보였다. Fig. 10은 랜드 폭의 변화에 따른 기체 확산의 추이를 보여주고 있다.

5. 결론

본 논문에서는 고분자절해질 연료전지에 사용되는 기체 확산층의 특성평가를 수행하여 다음과 같은 결론을 추출한 연구를 진행 발전을 도출하였다.
1. 연료전지 내부의 입력 차와 유로 형상으로 인해, 위치에 따라 확산속도의 감소와 입력 구매 현상이 발생하였다. 이는 전극으로의 균일한 연료의 공급을 방해하는 요인이 되며, 이러한 이유로 향후 기체 연구에 있어 내부의 속도 감소 및 입력 구매에 따른 균일한 연료의 공급을 위해 기체 확산 속도의 변화를 주어 제작하는 연구를 수행할 계획이다.
2. 기체 확산층의 두께가 200~300 μm가 가장 우수한 기체 확산 특성을 보였으며, 적절한 기체 도의 선택 및 유로 형상의 조화가 연료전지의 성능을 향상시키는 중요한 인자이다. 또한 기체 확산층의 두께, 기체 도로 유로 형상은 개별적으로 연료전지의 성능에 영향을 미치는 중요한 인자이며, 또한 이를 복합적 관계를 고려한 특성 조건이 연구되어야 한다.

추가

본 연구는 산업자원부 성장동력, 중기기획/차세 대신기술개발사업의 마이크로 태양광 기체 장치 개발"의 세부과학으로 수행 중이며 이에 관계자 여러분께 감사를 드립니다.

참고문헌