KTX차량의 주행 안전성 해석

김재철(한국철도기술연구원), 이찬우(한국철도기술연구원), 유원희(한국철도기술연구원)

Analysis on Running Safety for KTX Vehicle

Jae-chul Kim(Korea Railroad Research Institute), Chan-Woo Lee(Korea Railroad Research Institute)
Won-Hee You(Korea Railroad Research Institute)

ABSTRACT

KTX is the high speed train which is designed for 300km/h in maximum operation speed. But its long train set may cause unstable characters as swaying of the tail of a train and when the train is running on conventional line, its running safety is a point to be considered cautiously.

In this study, we evaluated the running safety by the numerical analysis using VAMPIRE and compared the result with the test result of KHIST, which is being in performance tests, for verifying the validity of analysis results.

Key Words : Running Safety(주행 안전성), High Speed Train(고속철도), Wheel Conicity(차륜반면구배)

1. 서론

철도협약으로 일어나지는 고속철도(KTX)의 개통이 2004년 4월 1일부터 시작되면서 우리나라에서 처음으로 고속철도 시대가 열리게 되었다.

KTX차량은 20량 동일대로 구성되어 있으며, 최고속도 300km/h로 주행할 수 있도록 프랑스의 TGV의 기술로 설계된 차량이다. 그러나 프랑스와는 여러 운행조건이 다르기 때문에 1998년부터 시험운행을 시작하여 개통하기 전까지 수많은 시험을 수행되어 차량의 안정성(Stability) 및 안전성(Safety)이 검토되었다. 그러나 동결상 KTX 시험운행 중에 차량속도 약 140km/h이상의 속도영역에서 차량 후미 부에서 거주자에게 허가된 이상상태가 발생하여, 차

2. KTX차량 모델 및 타당성 검토

2.1 차량 모델 및 차륜의 도면형상

KTX차량의 도면형상에 대한 모델은 Fig.1과 같이 P (동력차)+MT(동력객차)+16T(객차)+MT(동력객차)+P(동력차)20량으로 구성되었으며, 대차는 P(동력차)용 동력대차(PMB, Power Motorized Bogie) 4대, 동

Fig.2는 GV40과 XP55차량에 대한 담연형상의 나타내고 있다.
2.2 차량 안전성 평가기준 및 해석구간

철도차량의 안전성 평가는 차량의 탈선과 관련된 탈선계수, 운용감소, 차량이 레도에 무는 영향에 대한 계산 및 측정이 이루어지고 있다.

탈선에 대한 안전도는 Table. 1과 같이 해석기준이 각각에서 다양하게 적용하고 있기 때문에 해석기준을 초과한다고 해서 반드시 탈선이 일어난다고는 볼 수 없고, 탈선의 가능성에 관한 주행안전성을 보장할 수 없다는 의미를 내포하고 있다. 따라서 주행안전성을 확보하고 보장하기 위해서는 그 기준을 강화하여 적용할 수 있을 것이다.

<table>
<thead>
<tr>
<th>Items</th>
<th>Allowable limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derailement Coefficient Q/P</td>
<td></td>
</tr>
<tr>
<td>1. Q/P ≤ 24 1/3 (T: Time)</td>
<td>Japan: · < 0.05 sec : jumping over</td>
</tr>
<tr>
<td>2. Q/P ≤ 2</td>
<td>· ≥ 0.05 sec : running over</td>
</tr>
<tr>
<td>(Probability of Accumulated Number: 0.1%)</td>
<td>Korea: · Q/P ≤ 1 (Probability of Accumulated Number: 0.1%)</td>
</tr>
<tr>
<td>Wheel Unloading Ratio(%)</td>
<td>Japan: · Hz Low Pass Filtering</td>
</tr>
<tr>
<td>(Probability of Accumulated number: 0.1%)</td>
<td>Korea: · Hz Low Pass Filtering</td>
</tr>
<tr>
<td>Lateral Force</td>
<td>Japan: · verage value every 2m distance</td>
</tr>
<tr>
<td>Q ≥ 45+0.3P(kN)</td>
<td>· udhomme Limit(F=1)</td>
</tr>
<tr>
<td>Q = F(10+2P/3) (F: Safety Factor)</td>
<td></td>
</tr>
</tbody>
</table>

본 연구에서는 국내에서 적용하고 있는 탈선계수와 운용감소에 대한 해석기준을 적용하였고, 영업의 경우에서는 일본과 영국의 기준이 혼용되고 있기 때문에 두 가지 기준을 적용하였다.

KTX차량의 수치해석을 하기 위해서는 입력조건 으로 레도에 대한 데이터가 요구된다. 따라서 본 연구에서는 Table. 2와 같이 정부고속철도 시험선 구간과 기존선 구간의 레도 검속자로 측정된 실제 데이터를 이용하였다.

2.3 KTX차량 모델의 타당성 검토

우선, KTX 차량에 대한 해석결과의 타당성을 검증하기 위해서 현재 개발되어 시험 중인 한국형 고속철도(KHST)차량에 대해 정부고속철도 시험선 구간에서 측정한 탈선계수와 운용감소율의 결과를 비교 검토하였다. Fig. 3은 KTX 차량이 경부고속철도 시험선 구간 106.3km-122.3km의 구간을 225km/h의 속도로 주행 시 해석한 결과이며, Fig. 4는 KHST 차량이 경부고속철도 시험선 구간을 220km/h의 속도로 주행 시 시험한 결과이다. 위의 결과는 전두부 동력차의 첫 번째 차축에 대한 결과로서 해석구간과 측정구간이 정확히 동일한 구간이 아니기 때문에 두 결과가 정량적으로 일치하지는 않지만, 대체
3. KTX차량의 주행 안전성 해석결과

3.1 KTX차량의 입계속도 해석

레일 위를 주행하는 철도 차량은 차륜의 닫면구배에 의해서 차량의 좌우진동이 발생하는 사행동 (Hunting)현상이 발생하며, 어느 속도 이상으로 주행할 경우에는 사행동이 급격히 증가하여 차량이 불안정하게 된다. 이때의 속도를 입계속도라 하며, 이 입계속도는 차량의 주행 안정성(또는 현상에 대한 안정성이라고도 함)의 적절한 표준값에 차량 설계시 차량의 최고속도가 입계속도를 초과하지 않도록 한다. KTX차량의 닫면구배에 따른 입계속도는 프랑스에서 차륜의 닫면구배 변화에 따라 Table 3과 같이 제시하였다. 이 결과로부터 GV40(닫면구배:1/40)차륜과 XP55(닫면구배:1/20)차륜에 대한 입계속도는 400km/h이상으로 현장현상에 의한 주행 안정성이 충분히 확보된 것을 알 수 있다. 그러나, 차량의 주행거리를 많이 겪수록 차륜의 닫면구배는 높아져, 어느 닫면구배에 도달하면 차륜을 최초의 닫면구배로 설치한다. 이러한 사항주기를 결정하는 요인 가운데 차륜의 닫면구배는 코다란 영향을 미치기 때문에 차륜 닫면구배 중에서 대략적인 결과가 필요하다.

<table>
<thead>
<tr>
<th>Table 3 Critical speed of KTX for GV40 and XP55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Conicity</td>
</tr>
<tr>
<td>GV40 (1/40)</td>
</tr>
<tr>
<td>XP55 (1/20)</td>
</tr>
</tbody>
</table>

KTX차량에 대해서 프랑스에서는 차륜의 닫면구배가 0.3이기 증가하여도 차량의 입계속도는 350km/h이하로 낮추기기 때문에 차량의 주행 안전성을 보장하고 있다. 그러나, 실제 이론과 차륜의 닫면구배에 대한 정격이 국내에서는 수행되지 않았기 때문에 본 연구에서는 차륜의 닫면구배가 0.3인 경우에 대해서 입계속도를 계산하여, 프랑스가 제시한 입계속도를 평가 분석하였다. Fig. 5는 차량의 현장현상이 발생하는 입계속도를 파악하기 위해서 차량이 375km/h의 400km/h의 속도로 주행 시 첫 번째 관찰대치에 대한 황방향 가속도의 해석 결과이다. 이 결과로부터 차량의 속도가 375km/h에서의 황방향 진동이 발생하다가 다시 안정화되는 것을 확인할 수 있고, 차량의 속도가 400km/h에서는...
형 방향 진동이 계속해서 나타나는 것을 확인 할 수 있다. Fig. 6은 차량 속도별 차체, 대차 및 차축에 대한 형 방향 진동 가속도의 해석 결과로서 400km/h의 속도영역에서부터 차 형 방향 가속도가 급격히 증가하는 것을 알 수 있다. 따라서 차량의 달만구매가 0.3인 경우의 임계속도는 약 375km/h이상인 것을 알 수 있다.

<table>
<thead>
<tr>
<th>Items</th>
<th>GV40 Straight</th>
<th>GV40 Curve</th>
<th>XP55 Straight</th>
<th>XP55 Curve</th>
<th>M : Motor car</th>
<th>P : Passenger car</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derailment Coefficient</td>
<td>0.03</td>
<td>0.04</td>
<td>0.26</td>
<td>0.43</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>Wheel unloading ratio</td>
<td>26.8</td>
<td>34.4</td>
<td>25.7</td>
<td>38.6</td>
<td>26.1</td>
<td>34.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.1</td>
<td>30.3</td>
</tr>
<tr>
<td>Lateral force [kN]</td>
<td>1.8</td>
<td>2.2</td>
<td>28.1</td>
<td>24.6</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.3</td>
</tr>
</tbody>
</table>

이 해석결과에서 동력차에 비해서 각자의 결과가 대체적으로 큰 값을 나타내고 있으며, 특히 GV40차량이 XP55차량보다 탈선계수와 횡압에 대한 값이 상당히 큰 값을 알 수 있다. 이러한 원인은 Table 4에서와 같이 XP55차량의 경우에는 적선구간과 곡선구간에 대한 결과가 거의 유사하지만, GV40차량의 경우에는 적선구간보다 곡선구간의 결과가 크게 나타나고 있다. 따라서, 곡선선에 대한 KTX 차량의 주행 안전성 및 곡선 추종성은 매우 우수한 것으로 판단할 수 있으며, GV40차량보다 XP55차량의 곡선 추종성 측면에서 유리한 것을 알 수 있다.

3.3 검정 기준선에 대한 해석결과

대구-부산간의 기준선 구간은 신형화 작업이 600R 이상으로 완료된 상태기 때문에 추이해석은 600R 구간, 800R 구간 등 적선구간을 선정하여 수행하였다. 기준선의 추이해석을 위해서 사용된 KTX 차량은 16량 완성모델을 사용하였으며, 해석차량은 고속선과 동일하게 전부 동력차에 첫 번째 제작자로 대장으로 하였다. 그리고 기준선의 주행속도 조건은 현행 새마을호 운행속도와 기존속도 대비 10%를 증가시켰을 경우에 대해 추행안전성을 분석하였다. Table 5는 기존선에 대한 주행속도 조건에 사용한 극선별 동력속도이다.

Table 6은 기존선 구간에 대한 주행 안전성 해석 결과를 나타내고 있다. 곡선반경 600R 구간에서 기준속도로 주행하는 경우에는 모든 기준차를 만족하고 있지만, 10% 초속장상 시에 각자의 경우 운중 감소율이 현장해기준차 80%를 초과하고 있다. 그러나, 곡선반경 800R 구간과 적선구간에서는 기준속도와 10% 초속장상 속도에서 모두 기준차를 만족하고 있다. Table 6의 결과에서 600R 구간에 대한 10% 초속장 상 시 각자의 운중 감소율 초과치는 600R 구간의

Fig. 5 Calculation results for lateral acceleration of 1st articulated trailer bogie (Conicity:0.3)

Fig. 6 Calculation results for lateral acceleration of body, bogie and wheelset

3.2 차량 달만구매에 따른 KTX차량의 주행 안전성 해석

Table 4는 GV40차량과 XP55차량에 대한 달만계수, 운중 감소율, 횡압에 대한 해석결과이다. 전체적으로 달만계수, 운중 감소율 및 횡압 등 모든 항목이 기준치보다 상당히 낮은 것을 확인할 수 있다. 그러나
최대값을 평가한 것으로서 이러한 효과는 발생한
반도에 따라 그 안전성을 검토할 필요가 있다.

<table>
<thead>
<tr>
<th>Table 5 Speed limit on conventional line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius</td>
</tr>
<tr>
<td>600R</td>
</tr>
<tr>
<td>700R</td>
</tr>
<tr>
<td>800R</td>
</tr>
<tr>
<td>900R</td>
</tr>
<tr>
<td>1000R</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

Table 6은 기존선 구간에 대한 주행 안전성 해석
결과를 나타내고 있다. 곡선반경 600R구간에서 기존
속도로 주행하는 경우에는 모든 기준치를 만족하고
있지만, 10% 속도향상 시에는 성차가 경우 운중 감소
율이 하용 기준치 80%를 초과하고 있다. 그러나, 곡
선반경 800R구간과 직선구간에서는 기존속도와 10%
향상된 속도에서 모두 기준치를 만족하고 있다.

Table 6 Calculation results for KTX in conventional line (XP55)

<table>
<thead>
<tr>
<th>Items</th>
<th>Curve</th>
<th>Straight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600R</td>
<td>800R</td>
</tr>
<tr>
<td></td>
<td>110km/h</td>
<td>120km/h</td>
</tr>
<tr>
<td>Derailment Coefficient</td>
<td>M</td>
<td>P</td>
</tr>
<tr>
<td>Wheel unloading ratio [%]</td>
<td>62.5</td>
<td>65.9</td>
</tr>
<tr>
<td>Lateral force [kN]</td>
<td>42.1</td>
<td>53.5</td>
</tr>
</tbody>
</table>

Fig. 7 Derailment coefficient in curves (600R)

Fig. 8 Wheel unloading Ratio in curves (600R)
4. 결론

본 연구를 통하여 다음과 같은 결과를 얻었다.
1. KTX차량의 모델을 접속하기 위해서 정부고속선에서 KHST의 측정 결과와 KTX차량의 해석결과를 비교 검토하였다. 시험구간과 측정구간이 정확히 동일하지 않기 때문에 정량적으로 인지하는 것이 어렵지만, 대체적으로 유사한 결과를 나타내는 것은 알 수 있었다.
2. KTX의 주행 안정성 해석결과 차량의 달인구매가 0.3인 경우 일제속도는 375km/h이었다.
3. KTX의 탈선 안정성 및 곡선 추종성을 해석한 결과 정부 고속선에서는 GV40차량과 XP55차량에 대한 탈선 안정성과 곡선 추종성은 매우 우수하다는 것을 알았다. 그러나, 곡선구간에서 GV40차량의 횡이 XP55차량보다 약간 크게 나타나는 것을 보면, 곡선의 추종성은 XP55차량이 GV40차량 보다 좋은 것으로 판단된다.
4. 또한 정부 기준선에는 적선구간의 경우 페로및서인보수 기준을 강화한다면 세마포 horribly 기준속도보다 10%이상이 속도로 주행이 가능하다. 그러나 적선구간(600R, 800R)의 경우에는 차량의 안정성 축면을 고려하여 세마포 highly 기준속도로 주행하는 것이 바람직하다고 생각된다.

참고문헌