FEM을 이용한 Forming Roll 설계

윤형준(건양대 대학원 기계공학과), 윤영식(건양대 기계공학과)

Design of Forming Roll using FEM


ABSTRACT

In this paper, multi-pass roll forming process is simulated with a commercial FEM software. From these simulations, detects like excessive thickness decrease were estimated. And effects of springback, idle roll without force, and self-contacts between materials were also predicted. As a result, the defects of the forming process and the numbers of the roll pass can be decreased. And these analyses will be able to design the optimal roll forming process.

Key Words: 롤 포밍(Roll Forming), 유효요소법 (FEM, Finite Element Method), SHAPE-RF

1. 서론

롤 포밍(Roll forming)공정은 단면이 일정하고 긴 형태의 제품을 효율적으로 생산할 수 있는 공정으로 한 방 이상의 단단 롤러(Roller)를 이용하여 소재의 형태를 정지적으로 변화시켜 원하는 최종형상을 얻게 된다.

롤 포밍은 대표적으로 금속 가공 공정으로 널리 사용되고 있으나 공정에 대한 설계방법은 경험과 시행착오에 의존하고 있는 실정이며 이로 인해 제품 개발에 많은 시간과 비용이 소비되고 있다.

이러한 공정을 컴퓨터 시뮬레이션을 이용하여 미리 예측하여 볼 수 있다면 공정설계에 드는 시간과 비용을 줄일 수 있고, 제품에 발생할 수 있는 과도한 두께변화, 위험률 등을 예측하여 이를 보정함으로써 평질을 향상시킬 수 있음을 물론 과도한 안전을 배치하여 생산성 향상에 도움을 줄 수 있을 것이다.

최근 유효 요소해석을 이용한 시뮬레이션 프로그램이 많이 개발되어 여러 산업 현장에서 활용되고 있다. 본 연구에서 사용된 프로그램은 롤 포밍 전용 해석 소프트웨어인 SHAPE-RF이다. SHAPE-RF 는 자유 표면의 초기 결정을 위하여 일반화된 평면 변형 조건을 사용하여 초기 경계조건으로 사용되며, 3차원 동적 정상상태의 유연 요소 해석을 통해 속도분포를 구하고 경계조건 및 자유포인트를 보존하는 변복법을 통해 최종적인 해석을 결정한다.

이렇게 구해진 속도분포를 이용하여 변형률, 압력, 토크 등과 같은 제품 품질에 대한 정보를 얻을 수 있다. 또한, SHAPE-RF 는 현 재 CAD에서 작성된 데이터의 활용이 용이하고 각 재료에 빌로 롤러의 조건을 설정할 수 있어 생산 현장에서 활용하기 편리할 것으로 생각된다. 본 연구에서는 생산 현장에서 사용되고 있는 조건인 롤러 사이의 간격과 롤러의 각속도 조정을 통한 생산성 향상에 대한 연구에 의해 그 방법을 모색하여 증간결과를 정리하였다.

2. 유한 요소 해석

본 논문에서는 현재 생산되고 있는 슬라이드 레일 모듈 중 한 가지 부품의 제작 공정을 해석 대상으로 하였으며 최종 제품의 형상, 소재의 형상 및 기계적 특성, 작업조건 등이 생산공정에서 제공될
수치를 토대로 연구가 진행되었다. 허석 대상으로 설정된 최종 제품은 현재 생산되고 있는 슬라이드 레일 모듈의 부분으로써 그 형상은 Fig.1과 같다. 이러한 형상을 볼 모양하기 위하여 19단 페스가 사용되고 있으며 Fig.2는 1번, 10번, 15번, 19번 페스의 단면 형상을 보여 주고 있다.

사용된 데이터는 Auto CAD에서 작성되었으며 dxf확장자로 저장되어 변환되었다.

Fig.1 Component of slide rail module

Fig.2 Section of roller

사용된 소재는 냉간압연강관(SGCC)으로서 이 소재의 기계적 특성은 Table 1과 같다.

<table>
<thead>
<tr>
<th>Material properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's modulus (GPa)</td>
</tr>
<tr>
<td>Yield strength (MPa)</td>
</tr>
<tr>
<td>Ultimate tensile stress (MPa)</td>
</tr>
<tr>
<td>Poisson's ratio</td>
</tr>
</tbody>
</table>

소재의 단면은 두께 2mm 너비 63mm이며 소재로 부터 제품의 최종 형상이 나오기까지 각 페스에서 소재의 형상은 Fig.3과 같다.

제품의 형상이 최우 대칭점을 고려하여 허석을 수행하였으며 각 페스의 간격은 303mm로 설정되는데 18번, 19번 페스는 151.5 mm로 설정되었으며, 공여 소재의 마찰계수는 0.1이다.

Fig.4는 제작 과정에서 각 페스의 배치를 보여주고 있다.
생산현장에서의 요구에 의해 제품의 절단과 생산성에 영향을 미치는 것으로 예상되는 인장인 롤러의 각속도와 롤러 사이 간격을 조정하여 24가지 작업조건으로 해석을 수행하였다. Table 2는 작업조건을 보여주고 있으며, 현재 사용되고 있는 조건은 롤러간격 2mm, 각속도 3m/min이다.

<table>
<thead>
<tr>
<th>작업조건</th>
<th>롤러각속도 (m/min)</th>
<th>롤러간격 (mm)</th>
<th>롤러간격 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>1.95</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3.0</td>
<td>1.95</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>1.95</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4.0</td>
<td>1.95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>1.95</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5.0</td>
<td>1.95</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>2.5</td>
<td>2.05</td>
<td>19</td>
</tr>
<tr>
<td>14</td>
<td>3.0</td>
<td>2.05</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>3.5</td>
<td>2.05</td>
<td>21</td>
</tr>
<tr>
<td>16</td>
<td>4.0</td>
<td>2.05</td>
<td>22</td>
</tr>
<tr>
<td>17</td>
<td>4.5</td>
<td>2.05</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>5.0</td>
<td>2.05</td>
<td>24</td>
</tr>
</tbody>
</table>

3. 해석의 결과 및 분석

해석은 DELL 670 워크스테이션에서 수행하였고 전체 해석시간은 23시간, 각 페이스당 약 1시간10분이 소요되어 밀집 해석 소프트웨어를 사용했을 때보다 획일히 빠른 해석시간을 보여 주고 있다.

현재 생산 현장에서 사용하고 있는 작업조건인 롤러간격 2mm 롤러각속도 3m/min 조건에서의 Total effective strain, Longitudinal strain, Thickness 변화량의 플로어 패턴(Flower pattern)은 Fig.5 - Fig.7과 같다.

<table>
<thead>
<tr>
<th>작업조건</th>
<th>Thickness 변화량 (mm)</th>
<th>Total effective strain</th>
<th>Longitudinal strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.28E-01</td>
<td>1.61E+00</td>
<td>9.62E-02</td>
</tr>
<tr>
<td>2</td>
<td>5.26E-01</td>
<td>1.89E+00</td>
<td>8.49E-02</td>
</tr>
<tr>
<td>3</td>
<td>5.25E-01</td>
<td>1.86E+00</td>
<td>7.96E-02</td>
</tr>
<tr>
<td>4</td>
<td>5.24E-01</td>
<td>1.78E+00</td>
<td>7.06E-02</td>
</tr>
<tr>
<td>5</td>
<td>5.23E-01</td>
<td>1.69E+00</td>
<td>6.64E-02</td>
</tr>
<tr>
<td>6</td>
<td>5.21E-01</td>
<td>1.63E+00</td>
<td>6.16E-02</td>
</tr>
<tr>
<td>7</td>
<td>5.16E-01</td>
<td>1.67E+00</td>
<td>3.00E-02</td>
</tr>
<tr>
<td>8</td>
<td>5.17E-01</td>
<td>1.60E+00</td>
<td>2.88E-02</td>
</tr>
<tr>
<td>9</td>
<td>5.20E-01</td>
<td>1.59E+00</td>
<td>2.78E-02</td>
</tr>
<tr>
<td>10</td>
<td>5.22E-01</td>
<td>1.60E+00</td>
<td>2.58E-02</td>
</tr>
<tr>
<td>11</td>
<td>5.24E-01</td>
<td>1.66E+00</td>
<td>2.90E-02</td>
</tr>
<tr>
<td>12</td>
<td>5.28E-01</td>
<td>1.52E+00</td>
<td>2.61E-02</td>
</tr>
<tr>
<td>13</td>
<td>5.21E-01</td>
<td>1.83E+00</td>
<td>2.75E-02</td>
</tr>
<tr>
<td>14</td>
<td>5.22E-01</td>
<td>1.73E+00</td>
<td>2.64E-02</td>
</tr>
</tbody>
</table>
Table 3 과 같이 결과 값은 물리사이의 간격보다 플러의 각도에 의해 영향을 받음을 알 수 있다. 물리사이의 간격의 변화에 따른 변화도 있으나 매우 근소한 변화로, 각도의 영향이 크게 작용한다고 한다. 각도의 영향에 따라 단 소계에 미치는 압력은 작아지게 되며 Total effective strain 과 Longitudinal strain에서도 작은 값을 보이며 소성가공에 미치는 영향을 주는 것으로 판단된다. 그러나 작업조건 1-6에서 물리의 간격설정을 소계의 두께보다 작게 설정했을 때와 작업조건 19-24와 같이 소계의 두께보다 자주차게 크게 했을 때는 두께 변형량이 급격하게 커지는 것을 볼 수 있다. 또한 작업조건 1-6의 경우 Longitudinal strain이 다른 작업조건에서 보다 크게 나타나 가공에 악영향을 미치는 것으로 판단된다.

작업조건 7-24에서도 각도가 큰 쪽이 더 큰 두께 변화를 보이고 있으므로 제품의 요구 정밀도에 따라 각도를 조정하여 제품을 생산해야 할 것이다.

4. 결론

본 논문에서는 폴링 핀식 소프트웨어인 SHAPE-RF를 이용하여 폴링 공정을 시뮬레이션 하였고 그 결과를 바탕으로 물리설계에 적용할 수 있음을 살펴보았다.

이와 같은 소프트웨어의 활용은 제품 및 공정의 설계시기를 단축하고 시제품 제작 과정에서의 시험 작업을 최소화하여 생산성을 향상시킬 수 있음을 기대해 볼 수 있을 것이다.

참고문헌


764