A Study on the Criteria of the Level-Of-Detail in Feature-based Multi-resolution Modeling

S. H. Lee(Kookmnn University), K-Y. Lee(Seoul National University)

ABSTRACT

In feature-based multi-resolution modeling, the features are rearranged according to a criterion for the levels of detail (LOD) of multi-resolution models. In this paper, two different LOD criteria are investigated and discussed. The one is the volume of subtractive features, together with the precedence of additive features over subtractive features. The other is the volumes of features, regardless of whether the feature types are subtractive or additive. In addition, the algorithms to define and extract the LOD models based on the criteria are also described. The criterion of the volumes of features can be used for a wide range of applications in CAD and CAE in virtue of its generality.

Key Words: Multi-resolution (다중해상도), Level of detail (상세수준), Feature (특징형상), Solid model (솔리드모델), Non-manifold (비다양체), Merged set (병합체)

1. 서 론

1.1 연구 목적

최근 기계 분야 제조업체에서는 특정형상 모델링 기법을 바탕으로 한 3 차원 CAD 시스템이 제품 설계에 널리 사용되고 있다. 그런데 설계 단계에서 만들어진 제품 모델의 해석을 포함한 이후 여러 용 분야에 사용될 때는 상세 형상 모델보다 다양한 상세 수준(level of detail (LOD)) 단순화되거나 축약된 모델이 훨씬 더 바람직하고 유용한 경우가 많으나. 이와 같이 하나의 형상 모델에 대하여 다양한 LOD에 대응되는 간략화된 특정형상기반 모델을 제공하는 기법은 특정형상기반 다중해상도 모델링(feature-based multi-resolution modeling) 기법이라고 하며, 최근 이에 대한 연구가 활발히 진행되고 있다. 다중해상도 모델을 추출하기 위한 LOD 판단 기준은 용분 분야에 따라 다르다. 기존의 LOD 판단 기준은 감법 특정형상(subtractive feature)에 대한 부피(volume)로서 가장 해상도가 낮은 모델은 모든 감법 특정형상을 함합 모델이 되고, 그 이상의 상세 모델들은 감법 특정형상을 부피가 큰 것부터 차례로 빠내감으로써 얻는다. 그러나 이 방식은 용분 분야가 제한적이고 또한 만일 모델이 가법 특정형상들만을 사용하여 모델링된 경우나 가법 특정형상들이 감법 특정형상보다 더 큰 경우는 함리적인 해를 제공하기 못하는 문제점을 앓고 있다.

이러한 문제가 해결하기 위하여 본 연구에서는 특정형상의 유호모델 이론에 근거한 다중해상도 모델링 시스템을 구현하였으며, LOD 판단 기준으로서 특정형상의 유형에 상관없이 특정형상의 영역 크기에 따라 LOD 모델을 제공할 수 있는 알고리즘을 제안하였다. 이 알고리즘은 최종 부품이나 이전 LOD 모델과 같은 기존 모델에 해져거나 더해지는 부분의 영역을 평가함으로써 보다 정확히 최종 부품 형상에 대한 특정형상의 가까움을 결정할 수 있도록 하였다. 이 LOD 판단 기준은 이론의 방법과 달리 가법과 감법 특정형상을 구분하지 않고 적용될 수 있기 때문에 보다 넓은 범위의 응용분야에 적용될 수 있을 것이다.

1.2 관련 연구

솔리드 모델에 대한 특정형상기반 다중해상도 모델링 기법의 필요성과 그에 대한 해법은 최초로 이건우 교수 그룹11에서 제안하였으며, 이에 대한 개념 및 확장은 이상한 등12, 이재열 등13에 수렴하였다. LOD 판단 기준은 용분 분야에 따라 다르며
최초로 제안된 판단 기준은 강볼 특징형상 (subtractive feature)에 대한 부피 (volume)로서 이는 주로 스티디드 모델의 레인지와 스탠드링 (streaming)을 위한 목적으로 사용되었다. 여기서 특기할 점은 이러한 가법 특징형상 (additive feature)도 강볼 특징형상에 우선한다는 점과 가장 해상도가 낮은 모델, 즉, LOD = 0인 모델을 모든 가법 특징형상을 합친 모델로 표현한다는 점이다. LOD가 1 이상인 모델들은 강볼 특징형상을 부피가 큰 것부터 차례로 배합함으로써 나타난다. 또 다른 LOD 판단 기준으로 제시된 것은 특징형상의 부피가 그 자체로서 이 경우에는 특징형상의 유형이 가임이기 감염이 가는 것을 구별하지 않는다는. 이 방식은 특징형상의 유형에 대한 이론적 제한이 없기 때문에 보다 넓은 범위의 응용 분야에 채택될 수도 있을 것으로 기대된다.

본 논문의 구성은 다음과 같다. 제 2 장에서는 강볼 특징형상의 볼륨은 LOD 판단 기준으로 선택한 경우에 대하여 소개하고, 제 3 장에서는 가법, 강볼 또는 같은 유형을 구분하지 않는 특징형상의 볼륨을 LOD 판단 기준으로 선택한 경우에 대하여 소개한다. 제 4 장에서는 특정 예를 소개하고, 제 5 장에서는 결론을 제시한다.

2. 강볼 특징형상의 볼륨

LOD에 대한 판단 기준은 응용 분야에 따라 다르다. 특징형상의 볼륨은 가장 근본적인 LOD 판단 기준 가운데 하나라고 할 수 있다. 과거 대부분의 연구에서는 가법 특징형상이 모든 강볼 특징형상보다 우선하고, 그 다음 강볼 특징형상을 볼륨의 내영치순으로 배열하는 방법을 사용하였다. 따라서 가장 낮은 해상도의 LOD 모델은 모든 가법 특징형상을 합한 결과이고, 그보다 높은 해상도의 LOD 모델들은 강볼 특징형상들의 볼륨 내영차순으로 차례로 배합하여 구한다. 이 방법은 주로 스티디드 모델의 레인지와 스트레인과 같은 응용 분야에 적용되어 왔다. 본 논문에서 제안한 다중해상도 모델링 방법에서는 특정형상의 특성의 조합에 관련된 변화가 가능하므로 당연히 이러한 특징형상의 채벌방식을 지원해줄 수 있다.

부품 모델이 n+1개의 특징형상을 적절하게 생성되었으며, 이 기반에 특징형상은 k+1개의 강 볼특징형상은 n-k개라고 가정하자. 강볼 특징 형상의 볼륨은 LOD 판단 기준으로 채울하는 방법에 서는 먼저, 특징형상들을 가법과 강볼 유형으로 분류한다. 다음, 가법 특징형상을 강 볼특징형상들 의 앞에 위치시킨다. 마지막으로, 가법과 강 볼특징형상들을 각 그룹내에서 볼륨이 큰 것부터 작은 것이 순서로 정렬시킨다. 이러한 규칙을 적용시켜 얻 은 특징형상의 채벌은 다음 식 (11)로 표현될 수 있다. 여기서 ϕk와 ψj는 각각 특징형상 채벌들 후 i번째 특징형상의 볼륨에서 작업과 유 효영역을 나타낸다.

\[M_\phi = \sum_{k=0}^{n} \phi_k \sum_{j=1}^{m_k} \psi_{j_k} \quad \sum_{k=1}^{n} m_k = m \quad 0 \leq k \leq n \quad (11) \]

가장 낮은 해상도의 모델 \(M_0 \)는 k+1개의 모든 가법 특징형상들의 대합합체의 결과이며, 따라서 LOD의 수는 n-k+1개로 줄어든다. 일반의 LOD 모델 \(M_0, M_1, \ldots, M_{n-k} \)는 다음 식들과 같이 얻어질 수 있다.

\[M_\phi = \sum_{k=0}^{n} \phi_k \sum_{j=1}^{m_k} \psi_{j_k} \quad 1 \leq j \leq n-k \quad (12) \]

\[M_j = M_0 \sum_{k=1}^{n} \phi_k \psi_{j_k} \quad (13) \]

반영된 LOD의 Fig. 2의 예제 모델에 이 판단 기준을 적용시킨다면, 특징형상들은 \(F_0 \rightarrow F_2 \rightarrow F_3 \rightarrow F_4 \rightarrow F_5 \)의 순서로 채배됨된다. 이 경우 다중해상도 특징형상들의 속성값들은 Table 1에 나타난 것과 같이 된다. 다음으로 특징형상과하나의 \(F_0, F_1, F_2 \)가 가법 특징형상이며므로 (즉, k=2), 가장 낮은 해상도의 LOD 모델은 이 세 특징형상을 합한 것이며, LOD의 수는 세 개가 된다. 결과적으로 세 개의 LOD 모델들이 다중해상도 미스터 모델로부터 추출될 수 있으며, 이 경우 각 LOD 모델에 대한 볼륨은 작업 정의는 \(M_0 = \phi_0 \cup \psi_2 \cup \psi_4 \), \(M_3 = M_0 - (\phi_2 - \psi_2 - \psi_4) \), \(M_2 = M_0 - (\psi_2 - \psi_4) \) 이 된다. 이들에 대한 결과가 Fig. 1에 나타나 있다.

<table>
<thead>
<tr>
<th>LOD</th>
<th>Feature Name</th>
<th>Creation Order</th>
<th>Build Primary</th>
<th>Efficiency Time</th>
<th>LOD Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bear</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>BV9S</td>
</tr>
<tr>
<td>2</td>
<td>Bear_Face</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>BV9S</td>
</tr>
<tr>
<td>3</td>
<td>Blender_Model</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>BV9S-10S</td>
</tr>
<tr>
<td>3</td>
<td>Blender_Model</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>BV9S-10S</td>
</tr>
<tr>
<td>4</td>
<td>Blender_Toy_Hide</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>BV9S-10S</td>
</tr>
</tbody>
</table>

이 방법에 사용된 LOD 판단 기준은 강볼 특징 형상의 전체 볼륨이다. 그러나 특징형상의 전체 볼륨을 일반적인 LOD 판단 기준으로 사용하기에는 다음과 같은 문제점들을 가지고 있다.

- 현재의 기법은 가법 특징형상이 모든 강 볼특징형상에 우선하여야 낮은 LOD를 갖게 된다. 그러나 경우에 따라서 가법 특징형상이 강 볼특징형상의 일부를 이루지 않게 되는 경우도 발생한다. 이 경우 판단 기준으로 사용된 LOD 모델이 적절하게 작동하지 않을 수 있다.
고학계의 통계학적으로 특징점이 분명한 및 확률적 특징점이 분명한 모델에 대한 이론적 기반을 제공하기 위하여 본 논문에서는 특징점의 특징점은 새로운 판단 기준으로 제시하고자 한다. 이 판단 기준은 특 징점이 가설이나 간접적이거나 관계없이 적용되지 않고 일반적인 판단 기준이라고 할 수 있다.

특징점의 특징점이라는 LOD 판단 기준은 어떤 특징점은 특징점을 특징점을 측정하는지에 따라 다양한 기준으로 세분화될 수 있다. 가장 간단한 경우는 특징점의 전체 특징점을 사용하는 것이다. 그러나, 앞 절에서 언급한 것과 같이, 이것은 최종 부품 형상에 기여하지 않는 특징을 포함할 수 있다. 이러한 문제를 해결하기 위해 Algorithm 1에 나타낸 것과 같이 기 준이 되는 모델과의 특징 차이를 판단 기준으로 삼 는 방법을 제안하고자 한다.

Algorithm 1은 \(F, k \)로 부터 \(k \) 빠진까지의 특징점들을 가운데 가장 작은 특징점과 찾아서 이 작업을 수행한다. 여기서 \(M \)는 \(\{F_{i, j, k, l}\} \) (즉, 특징점 \(F \)을 제외한 나머지 특징점들)의 집합에서 \(k \)로 시작하는 모델을 나타낸다. 만약 \(M \)가 기존 모델 \(M_{ref} \)에 가장 가깝다고 하면 특징 점 \(F \)가 주어진 취약의 특징점 \(F_{i, j, k, l} \) 중에서 가장 작은 특징점이라고 할 수 있다. 기존 모델 은 원래 부품 모델 \(M = M_{new} \)을 사용할 수도 있으며, 또는 바로 이전에 가한 LOD = k+1인 모델 \(M_{k+1} \)을 사용할 수도 있다. 여기서는 원래 부품 \(M_{new} \)을 기 준 모델로 설정하였다.

3. 특징점의 특징점

간단한 경우에도 LOD 판단 기준으로 제한한 기준 각각의 문제점들을 극복하기 위하여 본 논문에서는 특징점의 특징점과 새로운 판단 기 준으로 제시하고자 한다. 이 판단 기준은 특 징점이 가법이나 간접적이거나 관계없이 적용되지 않고 일반적인 판단 기준이라고 할 수 있다.

Algorithm 3. FindLeastSignificantFeature \((F, \ell, k) \)
1. Input: \(F \) the multi-resolution feature
2. \(\ell, k \): lower and upper bounds of the feature range for searching the least significant feature: \(\{F_{i, j, k, l}\} \)
3. Output: return the position of the feature of minimum volume.
4. // Set the variable minAV to a huge value.
5. minAV \(\leftarrow \) \(\infty \).
6. for \(i = \ell \) to \(k \) do
7. \(M_i = \bigcap_{j=1}^{i} V_j \).
8. AV = VolumeOf\((M_i - M_{ref}) \).
9. if \(AV < \min AV \) then
10. \(\min AV \leftarrow AV \).
11. \(\text{min_position}\leftarrow i \).
12. }
13. }
14. return min_position.

만일 이 알고리즘은 [6]의 Fig. 2 와 예제에 적용 한다면, 특징점들 중 \(F_6 \to F_3 \to F_4 \to F_5 \to F_2 \)의 순 으로 제법될 것이다. Table 2는 제법되었음을 때의 단조증상도 특징점의 각 측정점의 값을 보여 주고 있다. 여기서 특징점 \(F_6, F_3, F_4, F_5, F_2 \)의 유용영역이 각각 \(V_6, V_3, V_4, V_5, V_2 \)가 정의할 수 있다. Fig. 2에 나타난 것과 같은 다섯 개의 LOD 모델들이 이 단조증상도 모델로부터 세
Table 2 Rearranged multi-resolution features for the example solid model in Fig. 2 of Ref[6], using feature volume as the LOD criterion.

<table>
<thead>
<tr>
<th>No</th>
<th>LOD</th>
<th>Feature Name</th>
<th>Creation Time</th>
<th>Creation Volume</th>
<th>Modified Volume</th>
<th>LOD Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Solid</td>
<td>2</td>
<td>20</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Solid</td>
<td>3</td>
<td>27</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Solid</td>
<td>1</td>
<td>19</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Solid</td>
<td>4</td>
<td>24</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Solid</td>
<td>7</td>
<td>27</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

Fig. 2 The LOD models according to the multi-resolution feature table in Table 2.

4. 적용 예

본 논문에서 소개한 다중해상도 모델링 기법을 잘 알리기 전 ANC-101 시험 부품 모델에 적용 시켜 보도록 하겠다. ANC-101 테스트 프로젝트는 CAM-1의 Advanced Numerical Control (ANC) 프로그램에 의해서 설계된 것으로 기하학적 형상 모델링 능력을 테스트하기 위해서 만들어진 것이다. Fig. 3에 나타난 것과 같이 초기 부품 모델링 과정은 10개의 특징형상을 순차적으로 적용시킨 것으로 되었다. Fig. 4는 킴비 특징형상의 불록을 LOD 판단 기준으로 선정했을 때의 결과를 보여주고 있다. 이 경우 기존 높은 해상도의 LOD 모델은 모든 극단적 특징형상을 함의 된 것이 된다. Fig. 5는 특징형상의 불록을 LOD 판단 기준으로 선정했을 때의 결과를 보여주고 있다. 이 경우 특징형상의 유효이 감소하거나 가법이나는 상관없이 불록의 크기를 기준으로 제배열한 것이다.

5. 결론

본 논문에서 소개한 본 연구에서는 특징형상의 유효성을 이론과 근거가 다중해상도 모델링 시스템을 구현하였으며, LOD 판단 기준으로서 특징형상의 유효에 상관없이 특징형상의 불록 크기에 따라 LOD 모델을 제공할 수 있는 알고리즘을 제안하였다. 이 알고리즘에서는 최종 부품이나 이전 LOD 모델과 같은 기준 모델에 벗어나거나 더해서는 불복 의 양을 측정함으로써 보다 정확한 최종 부품 형상에 대한 특징형상의 기여도를 측정할 수 있도록 하였다. 이 LOD 판단 조건은 이전의 방법과 달리 가법과 감별 특징형상을 구분하지 않고 적용될 수 있기 때문에 보다 넓은 범위의 응용분야에 적용될 수 있을 것이다.

후 기

본 연구는 한국과학재단 목적기초연구(과제 번호: R01-2002-000-00061-0) 사업의 지원으로 수행되었음

참고문헌

1. 최동혁, 김태완, 이건우, “특징성기 형상어용한 B-rep 모델의 다중해상도 구현”, 한국 CAD/CAM 학회 논문집, 7 권 2 호, pp. 121-130, 2002