기계실 위치 변화가 고효율 갤트리 크레인의 안정성에 미치는 영향 분석

이성욱(동아대 대학원 기계공학과), 현근조(동아대 기계공학과), 심재준, 한동섭, 권순규(동아대 대학원 기계공학과), 김태형(경남정보대 기계자동차산업계열)

The Effect of Machinery House Location on the Stability of High Efficiency Gantry Crane

ABSTRACT

This study was carried out to analyze the effect of machinery house location on the stability of high efficiency gantry crane which can improve the productivity of the container transportation work by reducing cycle time. The wind load was evaluated according to 'Load Criteria of Building Structures' enacted by the ministry of construction & transportation. The uplift forces of high efficiency gantry crane under this wind load were calculated by analyzing reaction forces at each supporting point. And variation of reaction forces at each supporting point was analyzed according to machinery house location.

Key Words : Gantry crane(갤트리 크레인), Wind load(풍하중), Uplift force(진도력), Machinery house(기계실), Structural stability(구조 안정성)

1. 서론

경제의 세계화 진전에 따라 세계 케이터너 물동
양은 연평균 7% 내외의 높은 성장세가 지속되고 있
으며, 이에 따라 케이터너선박의 수입이 증가하고 있다. 그리고 1984년 미국 선해운법 발효 이후 세계
장기선 선원의 경쟁력으로 인하여 저온한 환경에서
도 경쟁력을 갖추기 위해 케이터너 단위당 운송비가
저렴한 케이터너선의 대형화가 크게 진전되어 작년
10년 이내에 12,000TEU급의 초대형 케이터너선박이
취항할 것으로 전망되고 있다.

케이터너선박이 이와 같이 초대형화될 때 따라 해
상물류의 형편에도 큰 영향을 미치게 되어 초대형
케이터너선의 기반 항만 수송의 정량적 늘어짐에
게 되어 항만의 확장 수는 증가하게 되었다. 즉 초대형
케이터너선이 기하하는 항만은 물류중심항만(Hub Port)이 되고, 인근의 타
항만은 피터항(Feeder Port)으로 구분되면서 항만의
기능 및 기존 처리물동량 서열이 바뀌게 될 것으로
예상되고 있다. 따라서 각 나라의 주요 항만은 물류중심항만이
되기 위해 케이터너선박의 계량기간과 환경비용을
절감하기 위한 항만시설이나 장비, 하역시스템에 관
한 연구가 활발하게 진행되고 있다. 국내외 경과에
도 항만 하역장비 본연의 주 연구대상인 갤트리 크
레인의 협업물체수와 관련 연구뿐만 아니라 초대형
케이터너선박에 적합한 구조와 작동방식 및 자동화
에 관한 연구가 증격적으로 수행되고 있다.

특히 최근에는 대부분의 국내 크레인 제작사들이
가격쟁에서 중국에 크게 뒤쳐 국제 경쟁력이 크게
위축되기 시작하였다. 따라서 이를 극복하기 위한 방안
으로 기술력을 바탕으로 한 고부가가치 크레인 개발
연구를 수행함으로써 기존 크레인의 메인 트로리
(Main-trolley), 서브 트로리(Sub-trolley) 및 엘리베이
터(Elevator)의 문제를 통한 하역능력 및 야드(yard)
의 운영효율을 향상시킬 수 있는 새로운 탑업의 고

그러나 갤러리 크레인은 차체뿐만이 아닌 차체의 환경 설정을 위해서는, 자체 높이가 현재의 경우에 주로 사용되고 있는 500톤 갤러리 크레인의 경우에, 구주 구조(Boom)를 올림 경우에 최대 100m에 달하게 되므로 바람에 매우 큰 영향을 받게 된다. 특히 2003년 태풍에 의해 내수 시에는 부산항의 신도만 및 자재구 구조에 의하여 총 110개의 갤러리 크레인이 파손되어 부산항의 기능을 일부 미비시킴으로써 막대한 물류 손실을 가져오기도 하였다.

따라서 본 연구에서는 개발한 고용률 갤러리 크레인의 중화 중에 대한 구조적 안정성 검토하기 위하여 강도에 대비하여 고용률 크레인을 설치하는 계획상태(Stowed mode)에서 갤러리 구조물의 내부 설계에 보전적으로 적용되는 갤러리구조물의 설계한 설계에 구조적 비용을 고려한 설계 결과의 갤러리 크레인 억제작을 분석하고 전체 자중의 15% 가량을 차지하는 기계식의 위치 변화가 발생하거나 크레인의 구조적 안정성을 미치는 영향을 유한요소해석을 통하여 분석하였다.

2. 유한요소해석

2.1 고용률 갤러리 크레인의 유한요소모델

본 연구의 모델인 고용률 갤러리 크레인은 기존 갤러리 크레인에 부착된 트롤리와 스프레더의 작업 범위를 줄이 갤러리 하역작업을 빠르고 용적으로 분업화한 것이다. 기존 트롤리와 스프레더는 배에서 갤러리나를 인근하여 엔리미터까지 이동하는 역할을 담당하므로 엔리미터로 이동한 갤러리나는 하부의 갤러리로 전달되어 서브 트롤리에 의해 대가지고 있는 트롤리에서 적재되는 것이다. Fig. 1은 고용률 갤러리 크레인(Two Trolley Elevator System)의 구조를 나타내고 있으며, Fig. 2는 이것을 이용한 하역작업과정을 설명하고 있다.

이와 같은 고용률 갤러리 크레인의 구조적 사양은 전송용량(Lifting capacity) 50tn, 이동거리(Out reach)가 51m, 철거 스팬(Rail span / 해체 후 이적 류스 크레인 거리)이 30.5m, 지상에서 봄(Boom) 및 거리(Girder)까지의 높이가 40m, 계수 시 지상에서 봄 높이의 높이가 100m에 달하는 대형 구조물이다.

따라서 본 연구에서는 해석성을 단순화하면서도 해석의 신뢰성을 높이기 위해서 고용률 갤러리 크레인의 각 부재의 각도 용해에 맞는 요소를 선택하여 본 유한요소해석 프로그램인 ANSYS 8.1을 이용하여 유한요소모델을 구성하고 해석을 수행하였다.

고용률 갤러리 크레인 상·하부 레이나 불과 각기 연결된 스테이(stay), 실빔(sill beam), 포탈빔(portal beam) 등에는 부재의 단면이 대칭형상을 가지고 있으므로 점성 6개의 자유도(ux, uy, uz, rotx, roty, rotz)를 가지는 3차원 대칭 모델을 사용하였으며, 레이나 동등 스프레더를 이용하여 갤러리의 설치위치에 대한 갤러리 구조물의 강도를 확인한 결과 갤러리 크레인의 구조물의 안정성을 높이기 위하여 갤러리의 갤러리 크레인의 구조적 안정성을 미치는 영향을 유한요소해석을 통하여 분석하였다.

Fig. 3은 본 연구에서 사용된 고용률 갤러리 크레인의 구조와 과정을 나타내고 있으며 Table 1은 유한요소해석에서 사용된 해석의 기계적 불성차이다.
Table 1 Mechanical properties of each material

<table>
<thead>
<tr>
<th>Material</th>
<th>Elastic Modulus</th>
<th>Density</th>
<th>Yield Strength</th>
<th>Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM490Y</td>
<td>210 GPa</td>
<td>7800 kgf/m³</td>
<td>350 MPa</td>
<td>490 MPa</td>
</tr>
<tr>
<td>STK400</td>
<td>210 GPa</td>
<td>7800 kgf/m³</td>
<td>235 MPa</td>
<td>600 MPa</td>
</tr>
</tbody>
</table>

2.2 기계실의 위치

전체 지층의 15% 가량을 차지하는 기계실의 위치 변화에 따른 고요율 견고리 크레인의 안정성을 분석하기 위하여 본 연구에서는 Fig. 4와 같이 상부 레그(upper leg), 끼, 거대기 만나는 지점을 원점으로 하고 기계실(Machinery house) 중심까지의 거리를 D로 할 때 D=13, 20, 36m의 3가지 경우에 대하여 지질점 에서의 변력을 비교·분석하였다.

2.3 풍하중 산정

본 연구는 풍하중이 견고리 크레인에 작용할 대 기계실의 위치 변화에 따른 지질점에서의 변력을 검출하여 풍하중에 대한 견고리 크레인의 안정성을 분석함으로 풍하중을 설정하는 것이 매우 중요하다. 따라서 본 연구에서는 건축물 및 구조물의 내부설계에 보편적으로 적용되는 건설교통부의 ‘건축물용중 기준’에 제시된 풍하중 설계 지진을 참고하여 고도에 따른 풍하중을 산정하여 유한요소해석에 적용하였다.

\[
W = G_j \cdot G_s \cdot q_j \cdot A \tag{1}
\]

\[
q_j = \frac{1}{2} \rho \cdot V_s^2 \tag{2}
\]

\[
V_s = V_0 \cdot K_s \cdot K_m \cdot L_0 \tag{3}
\]

\[W\]: 설계풍력 (kgf)
\[G_j\]: 중력계수
\[G_s\]: 기스트 계수
\[q_j\]: 설계폭압 (kgf/m²)
\[\rho\]: 공기밀도 (0.125 kgf/\text{m}²)
\[V_s\]: 높이 z에서의 설계풍속
\[V_0\]: 기본풍속
\[K_s\]: 풍속의 고도분포계수
\[K_m\]: 지형에 의한 풍속증감계수
\[L_0\]: 중요도 계수

식(1)-(3)은 견고리건축물기준에 따른 풍하중 산출식이다. 이 기준에서 기본풍속은 통계년도 20년 이상인 전국 56개 기상 관측소의 측정 기록을 바탕으 로 설정된 것으로 노동도가 C1 이상 지역의 지표면으로부터 10m 높이에서 측정한 10분 평균풍속에 대한 100년 재현기간풍속을 지침에 고려하여 정한 풍속을 의미한다. 부산의 경우 기본풍속은 40m/s로 설정되어 있으며, 이를 한간회대풍속(3초 평균)으로 환산시 약 55m/s에 해당하게 된다. 본 연구에서는 식(1)-(3)을 이용하여 해수에서 옥속으로 풍하중이 작용하는 경우(case 1)와 해일 방향으로 풍하중이 작용하는 경우(case 2)에 대하여 고요율 견고리 크레인의 구조적 안정성을 분석하였다.

2.4 경계조건

Fig. 3의 고요율 견고리 크레인에서 차량(truck)부와 타이데운(tie-down)으로 이루어진 #1~#4 지지점은 모든 축방향 변위가 고정(ux=uy=uz=0)되었으며, 스토이지핀(stowage pin)으로 구성된 #5, #6 지지점은 관이 한 쪽에 묶어 잡으므로 ux와 uz 방향만을 고정하였다. 그리고 봉과 거대의 연결부는 관으로 연결되므로 서로이 연결부는 각각 로델링하여 실질의 ux, uy, uz 병진 자유도를 일치시켜 연결부에서 흐름면 위 구축으로 인한 오랜자가 발생하지 않도록 하였으며, 거대 및 물체 연결되는 스테이지도 관으로 연결되므로 동일한 방법으로 각각의 실제 변형을 구현할 수 있도록 적절한 병진 자유도를 일치시켰다.

Fig. 5는 각 지지점에 적용된 경계조건을 나타내고 있다.

Fig. 4 Definition of machinery house location

Fig. 5 Boundary conditions of a TTES gantry crane
3. 해석결과 및 고찰

Fig. 6은 해측에서 육측으로 평가치가 작용하는 case 1에서 각 지지점의 수직반력의 나타낸 것이다. Case 1의 경우에는 #3과 #4 지지점을 기준으로 직진이 전도되어 하므로 #3과 #4 지지점에서 압축 반력(당량)이 크게 발생하였으며, #1과 #2 지지점에서는 구조물 간트리 체인이 전도되어 하므로 압축력이 상대적으로 낮게 발생하였다. 그리고 전체 최중 15% 가량을 차지하는 기계실의 위치가 변화함에 따라 캐취의 부도 중심이 변화하게 되었다. 특히 기계실이 육측 레그 후방에 위치하는 D=36m인 경우에는 #1 지지점에서 11kN 가량의 인장력이 발생하였으나 기계실이 D=20m, 13m로 육측 레그 부근으로 이동함에 따라 인장력 대신 압축력이 각각 48kN, 715kN 가량 발생하게 되었다.

Fig. 7은 해측방향으로 평가치가 작용하는 case 2에서 각 지지점의 수직반력의 나타낸 것으로 육측이 해측에서 육측으로 작용하는 case 1과 달리 #2와 #4를 기준으로 구조물 간트리 체인의 전도되어 하므로 #2와 #4 지지점에서 압축력이, #1과 #3 지지점에서는 인장력이 발생되는데, case 2에서는 case 1과 달리 기계실과 체인의 구조적 비대칭성으로 인하여 #1과 #3, #2와 #4 지지점의 반력이 크게 차이나는 것을 확인할 수 있다.

그리고 case 2에서도 기계실의 위치가 육측으로 이동함에 따라 육측 지지점인 #1과 #2 지지점에서는 인장력이 감소하고 압축력이 증가하였으며, #3과 #4 지지점에서는 그 반대의 현상이 발생하는 것을 확인할 수 있었다.

4. 결론

기계실의 위치 변화가 구조물 간트리 체인의 평가치에 대한 안정성에 미치는 영향을 분석한 결과 기계실은 체인 전체 자중의 15% 가량을 차지하는 고(高)중량채이므로 그 위치에 의하여 각 지지점에서 발생되는 반력이 크게 변화되었으며, 기존 캐취를 TTES화 할 경우 천바이어 프레임의 자중에 의한 해측의 각 지지점에서 약 200kN 이상의 인장력 감소효과를 발생시키기 때문에 평가지를 기존 캐취보다 고출을 간트리 체인의 전도에 대한 목관성이 더욱 우수하였다.

후기
본 연구는 산업자원부의 지원하한 안전성사업의 연구결과로 수행되었음.

참고문헌