Design of the Various Capacity Wedge-type Rail Clamp for a Quay crane
According to the Design Wind Speed Criteria Change

J. M. Lee(Dept. of Mech. Eng., Graduate school, DAU), G. J. Han(Dept. of Mech. Eng., DAU)
J. J. Shim, D. S. Han, S. W. Lee(Dept. of Mech. Eng., Graduate school, DAU)

ABSTRACT

Recently many countries have concentrated their effort on the port automation, in order to be the Hub-port, that the Ultra Large Container Ship could come alongside the Quay, in their region. As the magnitude of the container ship increase, that of the Quay crane increases from 50ton-class to 61ton-class more and more. The wind speed criteria to design the structures used in the port was upgraged from 20m/s to 40m/s due to change of the weather condition. Our laboratory could have the ability to design the wedge type rail clamp for 50ton-class Quay crane in 30m/s wind speed. Accordingly we analyzed the load condition of the Quay crane about 40m/s wind speed upgraded from 20m/s and designed the wedge type rail clamp for 50ton and 61ton-class Quay crane.

Key Words : Design wind speed (설계 풍속), Quay crane (콘테이너 크레인), Various capacity (제용량), Rail clamp (레일 클램프), Wedge (체기), Wedge angle (체기각), Jaw (조)

1. 서론

세계 무역규모의 성장과 더불어 컨테이너화의 이용증가에 골동장이 증가하고 있다. 이에 따라 컨테이너 선박이 대형화되고 있으며, 컨테이너 크레인의 규모 또한 대형화되고 있는 추세이다. 컨테이너 선박이 부두에 접안하면 컨테이너의 열·하역을 위해 Quay crane은 레일을 따라 이동하면서 작업을 하는데, 이 때 감지기 발생하는 둥동 등에 의해서 크레인의 레일 방향으로 밀리는 현상이 발생한다.

작업 중에 발생하는 크레인의 열로 인해 둥동이 발생하기 위해서 크레인에 레일 클램프(rail clamp)를 설치한다. 레일 클램프는 크레인의 제동 장치 중의 하나로 레일 클램프의 프레임과 연결된 조(jaw)의 직렬 배열의 원리에 의해 작동하는데 바닥이 불평 없을 때에는 조 개드(jaw pad)가 레일 속면을 작은 힘으로 가압하고 있다가 둥동 등에 의해서 크레인이 풍속증을 받으면 돌리(roller)가 체기(wedge)의 경사면을 따라 이동하면서 풍속에 상응하는 힘으로 조 패드가 레일 속면을 더욱더 강하게 가압한다. 이러한 체기의 마찰력에 의해 레일 클램프가 작동하는 체기형 레일 클램프의 설계에 있어서 핵심사항은 적정 체기각을 설정하는 것이다. 반반하게 발생하는 풍등의 경우로 국내의 풍속대에 대한 설계 기준을 강화되며, 작업 시 크레인의 설계 최대 속도는 20m/s에서 40m/s로, 계류 시 크레인의 설계 최대 속도는 50m/s에서 70m/s로 상향 조정되었다.

본 연구팀에서는 국내 한화등급으로 30m/s의 풍속대에 기준한 50ton급 Quay crane용 체기형 레일 클램프를 설계, 제작하고 시험 평가를 통해 상용화에 성공하였다. 이러한 설계 기술력을 바탕으로 40m/s로 상향 조정된 설계 기준에 맞는 체기형 레일 클램프 및 다양한 용량의 Quay crane에 사용 가능한 체기형 레일 클램프를 설계하여 제조하고자 한다.
2. 케지형 레일 클램프의 최대 케지각 설정

2.1 크레인의 미끄러짐 방지를 위한 조건
[조건 1] 롤러가 케지의 정사면을 구르지 않은 평행조건 : 케지의 정사면에 수직한 롤러의 힘(F_R)이 롤러 하나에 작용하는 레일 방향의 풍하중(F_Z)과 인장 링(extension bar)의 압착하중(F_B)의 합력과 같다.

\[F_R \sin \theta = F_Z \]

(2)

[조건 2] 레일 클램프가 미끄러지지 않도록 평행조건 : [조건 1]에서 계산된 롤러의 레일방향 풍하중(F_R)에 의한 조 패드의 레일 사이의 마찰력(\(\mu F_R \))이 케지 하나에 작용하는 레일 방향의 풍하중(F_Z)보다 클 것이다.

\[\mu F_R \geq F_Z \]

(3)

\[F_R = \frac{L_1}{L_1 + L_2} \frac{F_Z}{\cos \theta} \]

(4)

식(1), (2), (3)에 의해서 레일 클램프가 레일방향으로 미끄러지지 않음 염계 케지각, \(\theta_{CT} \)는

\[\theta_{CT} = \tan^{-1} \left(\frac{\mu L_1}{L_1 + L_2} \right) \]

(5)

이와 같이, 케지각(\(\theta_{CT} \))은 중속과 크레인의 용량에 따른 중요중에는 관계가 없음을 알 수 있다. 따라서 조 패드와 레일의 마찰계수(\(\mu \))가 0.5, 조의 상단부 길이(\(L_1 \))가 3L/4, 조의 하단부 길이(\(L_2 \))가 L/4로 설정할 경우 크레인의 용량과 관계없이 염계 케지각(\(\theta_{CT} \))은 20.6°이다.

![Fig. 2 Free body of the main part of the rail clamp to determine the critical wedge angle for the translation of the crane](image)

2.2 조의 전도방지를 위한 조건
[조건 3] 조 패드의 저항 모멘트(\(M_p \))가 롤러의 레일방향 풍하중(\(F_R \))이 조를 전도시킬 모멘트(\(M_j \))보다 클 것

\[M_p \geq M_j \]

(6)

조 패드의 저항 모멘트, \(M_p \)는

\[M_p = \frac{\mu G_p L}{A_p} \]

(7)

이로, 롤러의 레일방향 풍하중분(\(F_R \))이 조를 전도시킬 모멘트, \(M_j \)는이고, 롤러의 레일방향 풍하중분(\(F_R \))이 조를 전도시킬 모멘트, \(M_j \)는

\[M_j = F_R L_2 = \frac{L_2(L_1 + L_2)}{L_1} \frac{F_R \tan \theta}{A_p} \]

(8)

이와, 식(6), (7), (8)에서 조가 전도되지 않을 염계 케지각, \(\theta_{CT} \)는 다음 식이 된다.

\[\theta_{CT} \leq \tan^{-1} \left(\frac{\mu G_p L_1}{A_p (L_1 + L_2)} \right) \]

(9)

여기서 \(\mu \)는 조 패드와 레일 사이의 마찰계수, \(A_p \)
는 조 패드의 단면적, \(G_p \)는 조 패드의 단면 1차 모멘트 성분이고 \(L_1 \)은 조의 상단부의 길이, \(L_2 \)는 조의 하단부의 길이이다.

![Fig. 3 Free body of the main part of the rail clamp to determine the critical wedge angle for the rotation of the crane](image)

40m/s속속에서 50ton 및 61ton급 크레인용 레일 클램프의 조와 조 패드의 설계 자료를 Table 1에 나타내었다. 조 패드와 레일 사이의 마찰계수(\(\mu \))는 0.5이다.

Table 1 Determine of the jaw and jaw pad in the rail clamp with respect to the capacity of the quay crane

<table>
<thead>
<tr>
<th>Capacity [ton]</th>
<th>(A_p) [m^2]</th>
<th>(G_p) [m^3]</th>
<th>(L_1) [mm]</th>
<th>(L_2) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>7000</td>
<td>361.690</td>
<td>315</td>
<td>105</td>
</tr>
<tr>
<td>61</td>
<td>7700</td>
<td>435.429</td>
<td>345</td>
<td>115</td>
</tr>
</tbody>
</table>

50ton급 크레인용 레일 클램프에서 조가 점도되지 않은 임계 레이크값(\(\theta_{CR} \))은 10.5°이고 61ton급 크레인용 레일 클램프에서 임계 레이크값(\(\theta_{CR} \))은 10.4°이다. 따라서 40m/s 속속에서 [조건 1], [조건 2], [조건 3]을 모두 고려했을 때 50ton급 Quay crane용 레일 클램프에서 조의 임계 레이크 값(\(\theta_{CR} \))은 10.5° 61ton급 Quay crane용 레일 클램프에서 조의 임계 레이크 값(\(\theta_{CR} \))은 10.4°가 된다.

3. 채기형 레일 클램프의 최소 채기각 설정

3.1 채기형 채기각 설정을 위한 레일 클램프 모델

점령상태-물차가 종단히 회전하여 채기에 의한 압착력이 조 패드의 요구 마찰력 만족한 상태시-일 때 하중조건을 분석하여 레일 클램프 각 단품의 최소 안전적 수평방향 장비감사기준을 만족하도록 설계한다. 다음으로 벤공 유한요소해석 프로그램인 ANSYS 8.1을 이용하여 강도해석을 수행하여 얻은 각 단품의 변형량을 계산한다.

![Fig. 4 Diagram of the wedge in the rail clamp with respect to the capacity of the Quay crane](image)

\[
\delta_T = \frac{L_1}{L_1 + L_2} (\delta_R + \delta_h) + \frac{L_2}{L_1 + L_2} \delta_l
\]
\[
+ (\delta_R + \delta_h) \cos \theta + \delta_l + \delta_R
\]

여기서, \(L_1 \)은 조의 상단부의 길이, \(L_2 \)는 조의 하단부의 길이, \(\delta_R \)는 조의 하단부의 변형량, \(\delta_h \)는 조 패드의 변형량, \(\delta_l \)는 레이크의 변형량, \(\delta_w \)는 채기 폐쇄의 변형량, \(\delta_l \)는 채기 세공의 변형량, \(\delta_h \)는 인장불의 변형량을 나타낸다. 평형상태에서 총 변형량(\(\delta_g \))과 크레인의 최대방향 적용거리(\(L_{gb} \)) 사이의 관계에서 최소 임계 레이크값, \(\theta_{CR} \)는 다음 식이 된다.

\[
\theta_{CR} \geq \tan^{-1} \left(\frac{\delta_T}{L_{gb}} \right)
\]

Fig. 4는 작업 시 최대 설계 속속 40m/s의 조건에서 50ton급 및 61ton급 Quay crane용 채기형 레일 클램프의 주요 부품 중 채기의 형상과 자료를 나타낸 것이다.

3.2 유한요소해석을 통한 최소 채기각 설정

40m/s의 속속에서 50ton급 및 61ton급 Quay crane
용 채기형 레일 클램프의 동작은 각각 153.72ton과 177.99ton이며, 레일 클램프에 대한 강도해석결과를 Table 3와 Table 4에 각각 나타내었다.

Fig. 5 FEM of the wedge in the rail clamp with respect to the capacity of the Quay crane

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>σ_{max} (MPa)</th>
<th>Safety factor</th>
<th>δ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jaw</td>
<td>503.63</td>
<td>1.64</td>
<td>0.200</td>
</tr>
<tr>
<td>2</td>
<td>Jaw pad</td>
<td>458.22</td>
<td>1.63</td>
<td>0.064</td>
</tr>
<tr>
<td>3</td>
<td>Locker</td>
<td>109.81</td>
<td>3.64</td>
<td>0.010</td>
</tr>
<tr>
<td>4</td>
<td>Roller</td>
<td>545.18</td>
<td>1.37</td>
<td>0.097</td>
</tr>
<tr>
<td>5</td>
<td>Wedge</td>
<td>578.54</td>
<td>1.22</td>
<td>0.077</td>
</tr>
<tr>
<td>6</td>
<td>Frame</td>
<td>220.96</td>
<td>1.81</td>
<td>0.197</td>
</tr>
<tr>
<td>7</td>
<td>Bar</td>
<td>399.60</td>
<td>1.96</td>
<td>1.142</td>
</tr>
</tbody>
</table>

Table 3 Strength and stiffness analysis results of the main part of the rail clamp [50ton]

<table>
<thead>
<tr>
<th>No.</th>
<th>Part name</th>
<th>σ_{max} (MPa)</th>
<th>Safety factor</th>
<th>δ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jaw</td>
<td>329.69</td>
<td>2.50</td>
<td>0.139</td>
</tr>
<tr>
<td>2</td>
<td>Jaw pad</td>
<td>544.03</td>
<td>1.37</td>
<td>0.058</td>
</tr>
<tr>
<td>3</td>
<td>Locker</td>
<td>102.85</td>
<td>3.89</td>
<td>0.014</td>
</tr>
<tr>
<td>4</td>
<td>Roller</td>
<td>572.73</td>
<td>1.30</td>
<td>0.061</td>
</tr>
<tr>
<td>5</td>
<td>Wedge</td>
<td>583.95</td>
<td>1.21</td>
<td>0.066</td>
</tr>
<tr>
<td>6</td>
<td>Frame</td>
<td>199.64</td>
<td>2.00</td>
<td>0.226</td>
</tr>
<tr>
<td>7</td>
<td>Bar</td>
<td>382.39</td>
<td>2.05</td>
<td>1.202</td>
</tr>
</tbody>
</table>

Table 4 Strength and stiffness analysis results of the main part of the rail clamp [61ton]

본 연구에서는 기상변화 등으로 인한 설계 풍속 상향 조정에 따른 Quay crane용 재료량 채기형 61ton급 레일 클램프의 설계를 위한 프로세스 중 채기각 설정을 위한 연구를 수행한 결과 다음과 같은 결론을 얻었다.

1. 채기형 레일 클램프의 최대 채기각은 조각 레일 방향으로 미끄러지지 않는 조건과 회전하지 않는 조건을 이용하여 결정하고
2. 조각 회전하지 않음을 임계 채기각은 50ton급 Quay crane용 레일 클램프의 경우 10.5°, 61ton급 Quay crane용 레일 클램프의 경우 14.5°로 나타났다.
3. 채기형 레일 클램프의 최소 채기각은 주요 단품인 조, 조 패드, 링, 펑크, 채기, 채기 프레임, 연장봉의 7가지 단품의 변형량의 조합에 의해 결정되며, 최대 미끄럼 거리를 25mm로 하였을 경우 최소 채기각은 50ton급 Quay crane용 레일 클램프는 9.2°, 61ton급 Quay crane용 레일 클램프는 9.9° 입을 알 수 있다.
4. 40m/s의 풍속에서 최대 및 최소 채기각 조건을 고려한 결과 최상 채기각은 모두 10°로 설정하였다.
5. 본 연구를 통하여 설계 풍속 상향 조정에 따른 Quay crane용 재료량 채기형 레일 클램프의 설계를 위한 프로세스를 확립할 수 있었다.

추가

본 연구는 산업자원부의 지역혁신 인력양성사업의 연구결과로 수행되었음.

참고문헌