RFID Middleware Framework for Ubiquitous Environment and Its Implementation

Young-Il Kim

Tae-Su Cheong

Joo-Sang Park

RFID/USN Middleware RFID/USN Middleware RFID/USN Middleware
Research Team, ETRI Research Team, ETRI Research Team, ETRI
embroca@etri.re.kr glink@etri.re.kr kappa@etri.re.kr

readers, filters and aggregates the information, and then
Abstract : sends it to enterprise system. Moreover, the market requires

For widespread adoption for the RFID technology,
RFID middleware is considered as the key enabler of the
RFID evolution while it manages the flow of data
between tag readers and enterprise applications and is
responsible for the quality, and therefore usability, of
the information. In this paper, we introduce the recent
researches and developments of RFID middleware and
explain the software framework of the RFID
middleware which is currently developed in ETRL In
conclusion, our experiences with the current
implementation are presented

1. Introduction

Ubiquitous computing is a new era in the evolution of
computers. Since its introduction by Mark Weiser in late
19807, the research direction has moved from an imaginary
phase into a realizable research phase as the technology for
system integration based on Internet has been rapidly
evolved and the demands that all computer devices are
seemly integrated into the environment and those
integrations ultimately provide useful services to humans at
any time and everywhere increase. Under the ongoing
situation, Radioc Frequency Identification (RFID)
technology has recently gained a lot of attention as a
technology to realize his vision, “ubiquitous computing”.
Moreover, the fact that the retail giant Wal-Mart and the
U.S. Department of Defense issued mandates requiring
their supplier to adopt RFID by 2005 accelerates the spread
of the attention to the RFID technology and most business
domains are considered as the deployment areas including
supply chain. As with the Intemet, RFID promises the
drastic changes across the broad spectrum of business
activities, :

Until recently, RFID hardware devices like transponders
and reader development have dominated the RFID market.
However, the trend has shifted to RFID software and
integration because RFID hardware without support of
software systems that can aggregate data coming from
multiple readers and pass it to back-end systems is of no
use. The basic functions of RFID software starts with
device monitoring and management. It extracts data from

a kind of middleware software platform that provides the
environment that the identified tag information is shared
with internal or external applications, and manages the
business process.

In this paper, we summarize the software requirements
for RFID middleware platform and deliver the technical
trends of RFID software. Also, we propose the RFID
middleware framework and then introduce some aspects of
our software implementation developed based on the
framework.

This paper is organized as follows. In the Section 2, we
present the software requirements of RFID middleware
framework. Section 3 delivers general technology trends
related with RFID. In the Section 4, we propose the
middleware framework satisfying the requirements
mentioned in Section 2 and introduces the RFID
middleware softiware we developed. The final Section
summarizes and presents the further work.

2. RFID Middleware Software Requirements

Generally, RFID systems consist of three main
components; the RFID tag, which is attached to the object
to be identified and serves as the data carrier, the RFID
reader, which detects tags in the read range, and the RFID
software system, which aggregates the data coming from
tag, passes it to the back-end system and integrates the
hardware devices with the back-end system. Again, in terms
of the middleware software, the RFID software system is
usually divided into two parts [1]. One is the RFID
middleware, which works on the edge of the network unlike
traditional middleware, manages the streams of tag data
coming in from readers and links the devices to software
infrastructure. The other is the conventional system
integration middleware, which basically couples up a
variety of applications which are distributed internally or
externally with the enterprise infrastructure. As RFID
technology is being adopted, the conventional middleware
takes the role of routing tag data using different transport
protocols, translating the data into the suitable format
satisfying the application requirements and so on.

There are many capabilities in order to build up RFID
software system and, especially, RFID middleware

—-215—

mailto:qlink@etri.re.kr
mailto:kappa@etri.re.kr

framework capabilities include:
2.1. RFID Reader Management

There is a wide variety of RFID readers available in the
market. Each one has its own device driver with data
exchange protocol and supports various communication
interfaces such as RS232, TCP/IP and so on. Also, some
readers in the market meet the EPC-compliance
requirements and some of others might be based on ISO
standards. In the reasons, RFID middleware should support
means to deploy, menitor and issue commands to readers
via a general interface. In other words, the middleware
hides the heterogeneity across RFID devices so that the
upper layers have uniform access to device layers.

2.2. Data Handling

Basically, the RFID reader checks the existence of tags
within the read range by periodic reading from hundreds to
thousands of times per second. As a result, 2 large volume
of data stream comes into the system, and there are a lot of
noises and duplicate reads. Not all of the data may be of
interest to the client applications, so filtering operation is
required to eliminate such information that is either
redundant or unnecessary, Additionally, a tag may not be
seen for every read cycle of a reader because the RFID
reader cannot report the tag read with 100% accuracy, so
the tag reads must be smoothed.

2.3. Integration with enterprise system

The RFID middleware collects, filters and summarizes
the data coming from tags and then should integrate the tag
reads with back-end system - for example, SCM, ERP or
WMS, etc - for the better business decision.

2.4. Share of data with partners and other
applications

One of the ultimate goals by adopting RFID technology
is to provide the ways to share the information about
individual tagged object and related business descriptions
with the trading partners and other applications. This leads
to the real-time visibility for products over the supply chain
and the improvement of business decisions.

2.5. Rule and exception processing

The industries expect that the adoption of RFID
technology enhances efficiencies of activities across the
business processes due to the characteristic of RFID
technology - automatic identification. The RFID
middleware provides the environment that users set the
rules in order to generate the business dependant semantic
events based on the tag reads, so it makes the RFID-based
-system to become a rule-based automatic business process
system. Also, when the exceptional cases occur, the
middleware system should cope with them by several
methods like sending the alarm to an administrator’s

e-mail address or SMS to him.
3. Trends of RFID System Framework

In terms of the international standardization process
related to RFID middleware, there are few ongoing
activities except those by EPCglobal Inc., which is the de
facto standards development organization for RFID system.
EPCglobal Inc. mainly works on the RFID standards
developments related to the domain like logistics and
supply chain as long as the software perspectives are
concerned and the possibility that the EPCglobal standards
would be adopted as the de facto standards is quite high.
Before moving onto the introduction of RFID middleware
framework, we review how the RFID software standards
has been evolved from Auto-ID Center to EPCglobal and
get the idea of the overall framework in this section.

3.1. Auto-ID Center

The Auto-ID Center was founded in 1999 and is
headquartered at MIT. The goal of its work is to build a
worldwide standard and create building blocks that are
needed for an effective infrastructure that no longer needs
human interaction and that is accessible by the whole
supply chain.

The infrastructure includes the following building blocks
{2]: Electronic Product Code (EPC) that identifies each
unique item, EPC tags that are attached to the product items,
EPC readers that can detect these tags using radio
frequency technology, Physical Markup Language (PML)
that is XML-based language and is used to describe the
products, PML Server that stores the product information
represented by PML, Object Name Server that map the
EPC to PML Server, and, at last, a middleware named
Savant that connects all the pieces. The network
infrastructure composed of the building blocks which are
mentioned above is called as “EPC Network”,

. y ONS
sLocal copy of frequently used ONS data &
“Registration for slatic and dynamic ONS | ONS{cache} |

vCollabotgtion on asset fracking Enterprise

Application(s)

“Track and fiace serat lems PML Sarver e
g fransactions) TR e
*Object fype data (eg. pallet/case/item;.... . adaitiona
tevel EPC data {eq. expiry date, ..} data
»Fine grained access control policy implementation: § aveni]daly siness

gnsaction

! Savant -
filtered event

dala
{optional)

“Hepoitdata ©
*Manage readers
»Highet lovel filters

i

“Capture events data (ag and sensars) "”””‘]
*Simple fillers Reader i

ePCs temperature, ...

% lTaéi aé]Sensor queries points to
*Transmit ePC data using radia frequency ! > ?
% S e updates provides data to

»Transmit sensor data 171

Figure 1. EPC Network Architecture (Auto-ID Center)

Figure 1 shows how EPC Network is organized and the

—-216—

building blocks interact with each other and extemal
applications. First, a tagged object is identified by a tag and
a reader. EPC, the numbering scheme to identify each
unique product instance, is writien on the tag and the reader
captures the code and sends it to the middleware called
‘Savant” with the reader location information and the point
of time when the tag is identified by the system. Savant
filters and summarizes the tag reads, and sends the data to
external applications including ERP and PML Server. PML
Server stores the tag data and associated business
description. It makes all data available in PML format to
requesting services. At last, ONS provides a global lookup
service to translate EPC into one or more network addresses
of where PML server is located.

In the initial specification for the middleware [3], the
savant server consists of an event management service
(EMS), a real-time in-memory database (RIED) and a task
management service (TMS) as internal components. RIED
is an in-memovy database which is optimized to achieve
sort of performance gains by removing the compiex SQL.
The database is used to store tag reads event information
for a short period. TMS performs the customizable tasks
like data management or monitoring. EMS plays the key
role in the savant server. It connects readers to applications
by managing the event flow generated by the readers. In the
later version of the specification [2], the focus moved from
specific processing features into the interface between outer
components.

Crher Services

ONS EPC Info Another Other Used by Specific
Service Savant Service Procesaing

Modides

Savant

le: Enterprise |
ader » ication |
. Uscr-defined Processing Madides Appli AppllCalloni

Ppil-
Reader’]‘_., Inter- Processing | | Processing cation |« Enterprise ,
face Modute Moadule inter- Application |

[+ x face

Standard Procesnng Moddes H r"
Processing } | Processing
Module Module

Processing Module Container

\

Iuer-moduls imtamemen
Aeougk AFL defined by
mectfic provecing

LEL

Figure 2. Savant Architecture

As seen in figure 2, Savant is a container of processing
modules, which provides a specific set of features and may
be customized to meet the needs for applications. All
components including EMS, RIED and TMS are considered
as the processing modules in this stage. The processing
modules interact with outer services via two predefined
interfaces — that is, Reader Interface and Application
Interface. The Reader Interface provides the
communication with the RFID readers and the Application
Interface provides the connection to external applications

including enterprise systems and other savant servers.

Most of commercial RFID middleware software systems
which are currently available in the market follow the
savant structure mentioned so far.

3.2. EPCglobal

EPCglobal, Inc. {4] is a joint venture company between
EAN Intermnational and UCC (Uniform Code Council) to
launch the efforts to drive global, multi-industry adoption
of the EPC Network. All the research activities developed
by Auto-ID Center moved onto the EPCglobal and its
purpose is to commercialize the EPC RFID system.

Siieorisesanasasaa s asn ey Titewwant Feteeseavavesssareratentassssstinabbes,
;o EICTIS Avcessmg ~ P Partner Acvessmg
Appheation : Application

................. P

EPCIS Onery Interface
i b P .
ErCE
Pepository
Bttt inaaaey | R 4
EPCIS Capturing Inter face

srrrrriatenareiarMioreaecrrisnnarery
i OEICD Captaving :
Apylwation H

I Applivation Level Events (ALE)]

Security

I FFIDMuddewse

ord

Reader Protacel 7 Managrnsent h\ml’acel
) P TTETT

FLopn

EFTD Feader

L} [_TagPwtecol TagDaasta |

Figure 3. EPC Network Architecture (EPCglobal, Inc.)

Figure 3 represents the EPC WNetwork Architecture
refined by EPCglobal [5]. Comparing with the architecture
originated at the MIT Auto-ID Center in Figure I, the new
architecture is focused on defining the interfaces between
each layer regardless of the definition and implementation
of internal processing structure for cach component. In
other words, EPCglobal governs only the standards for the
interfaces, and their implementation is out of the scope.

As depicted in the diagram, EPCIS, which plays the same
role of PML Server, sits at the highest level of the EPC
Network Architecture and has the capture and query
interfaces through which data is exchanged between EPCIS
Capturing Applications, EPCIS Accessing Applications and
EPCIS Repositories. That is, it allows external resources to
have access to the tag reads data and associated business
description through the standardized way, EPCIS Capturing
Interface includes the following operations: tag
commission/decommission, association among tagged
items, tag observation and so on. EPCIS Repository is
responsible for storing data coming through EPCIS
Capturing Interface and making the data available for latter
query via EPCIS Query Interface.

RFID middleware software resides in the layer below
EPCIS. The middleware, formally known as ‘savant’,

—217—

processes the reduction of the data volume directly coming
from various sources such as RFID readers and routes the
events of interest to applications. The term ‘savant’ was
deprecated by EPCglobal and is replaced to ‘Application
Level Events (ALEY. The role of ALE interface is to
maintain the independence between device infrastructure
and the applications that are the consumers of the tag data.
The interface defines the control and delivery of the filtered
and collected tag read data and EPCIS Capturing
Application has access to the middleware via the ALE
interface in order to obtain the tag read data. EPCIS
Capturing Application defines the metadata called ‘ECSpec’
that includes what readers are associated with, how the
boundaries for tag reads collection are defined and how the
tag list is reported. RFID middleware collects and reports
the tag reads to applications by following the ECSpec. The
development of the ALE specification is currently under
way and it is expected to be ratified in the first half of the
year, 2005,

4, The RFID Middleware Framework and
Implementation

So far, we discuss the software requirements for RFID
middleware, the evolution of EPC Network designed by
EPCglobal as a reference, and take a ook at the details of
RFID middleware. In this section, we propose the RFID
middleware framework and introduce the implementation
of the middleware software based on the framework. The
proposed RFID middleware is designed by adopting the
EPC network architecture — especially, the earlier version.

The RFID middleware framework that we propose as in
Figure 4 shows the high-level components to integrate
between heterogeneous RFID devices and the back-end
systems in a seamless manner.

1 Interprise Apptications —l

s Applicathon ImEerfaie Componens . . .
SR e b a7 e R s e
. it Mot 1nge Teamport Brder

o AR MLl T A et I,

7

Rsader Interface Compaongnt

5| Readwt Profiler | iProlmolProm“or Evant Generator !] command Processor

Diverse RFID Readers
[aenreaser | [warmperser | [ermsciamos ineaaen | [€161150 nesders |

i Readr Monitor l

Figure 4. Proposed RFID Middleware Framework

Basically, the proposed system is layered inte several
levels spanning from the device layer up to the legacy
application layer and, at each layer, a number of

components need to be defined. These components are
discussed in the following.

4.1. Reader Interface Component

The RFID middleware software should support various
types of reader devices and allow users to configure,
monitor and control all these devices. in order to meet those
requirements, Reader Interface Component (RIC) consists
of the modules as following.

Reader Profiler manages and maintains the data about the
devices which are deployed to the middleware system. The
data include the protocol which a device supports and the
extra information which is needed to operate the device.

Protocol processor helps ensure the middleware has
access to the RFID readers via various network
communication options and support low-level integration
with the hardware devices. Currently, readers are built on
various communication interfaces - such as R5232, TCP/IP
etc - and their own data exchange protocols to communicate
with applications, so protocol processor enables readers
from many different manufactures to interact with the
middleware application with seamless way. Our
middieware software currently supports only TCP/IP-based
communication with readers, but we plan to extend the
communication based on RS232 and USB.

Generally, tag reads from readers are sent to applications
every time read cycle per each reader completes. In this
case, as long as a tag stays at the read range, its tag read is
continuously notified to applications. On the other hand, we
introduce the event generation steps that serves to reduce
the volume of incoming tag reads data. Event Generator
defines three states per each tag and four different event
types which are generated when the transition between two
states happens. That is, the tag read is delivered only if
something interesting happens — here, the transition
between two different states occurs. Whenever a tag is seen
for the first time, the event ‘TagScen’ is generated.
‘FirmRead’ event is introduced when the tag appears
present for a number of read cycles within limited period. If
the tag previously generated a ‘FirmRead’ event, but has
not seen for a pre-defined time interval, then the tag
generates a ‘TagExpired’ event; Moreover, if the state of the
tag remains at ‘SoftRead’ state and no more the tag is seen
for a while, the event *TagVanished” is issued. This graceful
way gets rid of the redundant delivery process of the same
tag data and therefore leads to significant volume reduction
of incoming stream [6].

Command Processor converts the commands issued by
users to reader-aware commands and then passes them to
Protocol Processor. Reader Monitor is used to monitor the
healthy of the deployed RFID readers and manage the
readers through Graphical User Interface. Figure.6 shows
the main window of RIC and users can check the location
where the readers are installed and their aliveness through
the status of icons. Moreover, users can issue commands to

—-218—

a specific reader through GUL

«
3 *a
ey,

e A

NOY MessagrTyoe | EertTve Ert . . oot
Reaw P T e Smepe 1418 W 100 5. Wadiuas 129,254 163 171 Al OFF Manufuciarm Alen Pascw Tpm 4
o Peaswr W a0 mepe1 4 18 X 30:008 © | Pudatves 0000 Ackvats N Mapnckrer” At eader Twe Syt
1) Pracer Mol e M epe1 4 18 3 3r0ue 0 Oroe_| PAIEets D000 Awals. S ManuBctrer Meant Rudder Toe 8K 0
Ll e smepc 1416 34 400w IC . Patress 0000 Atvale Ch Mantctrer Harghad Reacer Tipe - 8OAF
=3 Readet Mooy AT e 14, 18.38 450w I Oroug | PAIERSS 0.0 0.0 Advate OGN ManOar . Harchid Reades T, -
Mew maceAD e 1808 S5m0p K Pasirese 120 254 185 147 Avate CFF stancruchuer Marics Reader Tk
o Rt MO et ren /418 Sivnuy K- rous t NA0veyy 179 255 185,105 Aty CFE amuschrer Makic Ko
R Hoow, ; Nz o, 17 o Ml v M Ry

,,.un,
13333
»
H

Figure 5. Reader Monitor GUI Window

4,2 Event Management Component

Event Management Component (EMC) performs
filtering, aggregation, and routing the RFID event data
coming from RIC, and then notifies the associated external
applications of the data. The number of RFID event data
flowed from RIC ranges from 10s of event per second up to
more than 100s a second, so it is important to apply
appropriate filtering processing on them. Filtering of that
data can eliminate such information that is either redundant
or that the client applications are not interested in. The
filtering requirements mainly depend on the application
domain.

Some of filtering examples that might be required of
almost all applications are following, Basically, a reader
reports redundant tag reads to applications as long as a tag
stays in the region. A basic filter is to eliminate the
redundant tag read events. In some cases, a tag cannot be
seen for every read cycle of a reader because the RFID
reader cannot report the tag reads with 100% accuracy.
Besides, unwilling tag read is sometimes reported in case
that an unexpected tagged object bypasses near the region.
Coping with all the situations, so-called smoothing filter is
applied. Another example is the ID-based filtering. Every
tag has its own unique ID and, if ID matches the predefined
bit pattern, then the filter passes it to applications while ID
that doesn’t match the pattem is thrown away. Also,
filtering based on reader identity is one of significant
filtering techniques. Lastly, multiple readers can report the
same tag read if they are placed close to each other and they
are related to the same semantic operation like readers to
capture the entering of products in a warehouse. For that
case, coordination filter is used to select a tag reads among
multiple tag reads from readers. Actually, the basis of
filtering tag read is whether an event is interested in client
applications or not. All the filters discussed so far are
supported by our middleware software as built-on filters.

By the way, the filtered data can be posted to other filters
for further processing, or loggers for sending event data to
external applications. When the filtered event data is
conveyed to client applications, the way of data exchange
and communication might be followed to the manner that
applications are required. However, in terms of the
middleware, it should also provide the common
communication interfaces so that the interface leads to
loosely couple the middleware from applications. We
currently support several well-known ways to deliver the
events. The methods include the notification via the
standard network protocols such as HTTP/POST or SOAP,
and via recording in persistent storage such as database and
file.

All the filters, queues and loggers can be developed as
unit modules and then they can be registered to EMC
system through the Processing Unit Manager. it allows
users to register the customized units so that they satisfy the
domain-specific requirements.

G) W

Poowt M50t e e g
L i LA e T R

ity Tag

1o, Suve Nomy S Owup
B aenion OF |oysr TG Ly
FileLagger iaLrgier
- e

b i, S — g — et

Figure 6. EMC Manager GUI Window

Event Flow Designer, as shown in Figure. 6, displays the
registered processing units and allows users to model the
process flow which describes how the event data can be
filtered, buffered and logged. All the processing units may
be connected in directed acyclic graph fashion to meet the
needs for the domain. The designer component saves the
flow diagram which is the result of the modeling as the
XML format file. Event Flow Manager instantiates and
executes the process modules by interpreting the XML
configuration file.

4.3, Task Management Component

Task Management Component (TMC) allows users to
define the custom tasks in order to manipulate the tag read
data collected from readers and then executes the tasks
periodically. User defines a custom task as a binary module
like java class file and then registers it via TMC
Administrator with the additional information on the
schedule for execution. Based on the information, TMC

—219—

scheduler executes the task and maintains the execution
history of the task,

4.4 Application Interface Component

Application Interface Component (AIC) offers interface
so that application system could control readers. Service
Listener received the requests from the application systems.
It offers the communication function such as XML-RPC,
SOAP-RPC, Web-service, etc. Message Processor analyzes
the delivered order and passes it to the Command Processor
of the Reader Interface. Then it receives a response from
the Command Processor and returns it to the application
system which called service.

4.5, Real-time Business Process Triggering System

Real-time Business Process Trigger System (RBPTS) is a
kind of a rule engine that validates user-defined rules based
on the tag read events and then invokes the services
whenever the rules meet certain conditions. Rules are
applied on the information when EMC feeds the tag read
data via the custom loggers for RBPTS. The activity that
this component is integrated with the business process
management solutions is ongeing for the aim of business
process automation triggered by the auto identification.

4.6. Object Naming Server

Object Naming Server is a directory service that matches
the unique code assigned to each tagged product to one or
more network location address (URL) of the servers which
has extensive information about the product.

5. Conclusions

RFID technology is known to be well-suited to linking
the physical and virtual world and is considered as a key
technology to lead us to the ubiquitons computing world.
Most of all, standardization is considered as a key factor in
encouraging widespread adoption of RFID technology and,
currently, several international organizations for
standardization such as EPCglobal Inc.,, work on
standardization in the field of RFID technology. Many other
organizations also make an effort to derive user and system
requirements, show diverse reference models incorporated
with RFID technology, and validate their applicability.

In this paper, we draw the software requirements for
RFID middleware and examine the technical trend of the
RFID software system. Then, we propose the RFID
middleware framework with the implementation issues. The
major role of RFID Middleware is to collect huge amount
of real-time tag read events coming from multiple readers,
perform filtering operation on the data stream in order to
reduce the data volume, and then provide the information to
other existing client applications. It is important for the
middleware to provide the umiform interface to client
applications regardless of heterogeneity among readers

from multiple vendors, having their own way of operation
and communication. Moreover, the issue how the more
meaningful information or knowledge can be produced
through gluing the events captured by RFID readers with
legacy systems might be resolved by adopting rule-based
engine such as RBPTS.

The prototype system of the introduced middieware
software suite is ready to be released soon. We are now
working on the field test in order to apply to many business
domains such as the warehouse management system and we
also need to validate the system in terms of performance
and flexibility. We hope to contribute our works to the
growth of the RFID industry.

REFERENCES

(1] RFID Journal, “Middleware is the Key to RFID”,
http://www.rfidjournal.comv/article/articleview/858/1/82

[2] Auto-ID Center, “Auto-ID Savant Specification 1.0”,
http://www.epcglobalinc.org/standards_technology/6_auto_
id_savant-1_0.pdf

[3] Auto-ID Center, “The Savant Technical Manual, Version
0.1 (alpha)”,
http://www.autoidlabs.org/whitepapers/MIT-AUTOID-TM-
003.pdf

[4) EPCglobal, Inc., http://www.epcglobalinc.org

[5] EPCglobal, “EPC Information Services {EPCIS)
Version 1.0 Specification”, Working Draft, Oct. 2004

[6] Auto-ID Center, “Auto-ID Reader Protocol 1.0”, Sept.
2003

—-220—

http://www.rfidjoumal.eom/article/articleview/858/l/82
http://www.epcglobalinc.org/standards_technology/6_auto_
http://www.autoidlabs.org/whitepapers/MIT-AUTOID-TM-003.pdf
http://www.epcglobalinc.org

