
WS-CPP (Web Services Conversation Preference Profile)

이강찬*, 이원석*, 전종홍*, 이승윤*, 박종헌**

* 한국전자통신연구원 표준연구센터 서 비스융합표준연구팀

** 서울대학교 산업공학과 교수

WS-CPP (Web Services Conversation Preference Profile)

Kangchan Lee, Wonsuk Lee, Jonghong Jeon, Seungyun Lee, Jonghun Park

Abstract
The Web Services Choreography Description Language (WS・CDL) is an XML-

based language that describes peer-to-peer collaborations of parties by defining,

from a global viewpoint, their common and complementary observable behavior;

where ordered message exchanges result in accomplishing a common business

goal. In this paper, we survey and analysis the functionality of the WS-CDL, and

propose new language, which enhance the WS-CDL for the conversation the

message between entities.

Key Word: Web Services, Choreography, Preferences, Mobile Web Services

-272 -

1. Introduction
A choreography description may be used to

generate the necessary code skeletons that can be

said to implement the required external

observable behavior for that Web Service. A

choreography description may also be used to aid

the testing of participating Web Services through

the generation of test messages that could be sent

to participants by means of an appropriate vendor

specific tool that reads the choreography

description and manages the test interaction

according to the choreography description. A

choreography description may also be used to

validate the multi-party observable interactions

amongst a collection of Web Services. A

choreography description may also be used to

show the presence of useful properties such as

lock freedom and leak freedom in the behavioral

contract. In this sense a choreography description

acts as a model of the behavior across a number

of Web Services which in turn can be subject to

static analysis to show that if and only if the

underlying Web Services behave according to the

contract that the interaction between the Web

Services will exhibit these properties.

A WS-CDL document can be used at design

time by a participant to verify that its internal

processes will enable it to participate

appropriately in the choreography. It can also be

used to develop a web services-based composite

process that can be said to implement the required

external observable behavior for the process. At

run time, the choreography definition can be used

to verify that everything is processed according to

the predefined conversation protocol [1].

While web services is currently emerging as the

dominant application on the Internet for

facilitating e-Business automation and integration,

it is also increasingly considered as a promising

platform for inter-connecting devices in mobile

and ubiquitous computing environment. By

embedding the web services into virtually any

computing devices, it becomes possible for a

device to automatically discover and interoperate

with other devices, establishing pervasive peer-to-

peer network connectivity of computers of all

form factors and wireless devices. Indeed,

considering that the interoperability problem is

the crux of realizing the vision of ubiquitous

computing and the web services are meant to be

consumed by programs not humans, making every

device an autonomous web service appears to be a

vital approach.

Some of the current ongoing efforts along this

line include Microsoft's invisible computing

project [2], UPnP 2.0 [3], and NETCONF [4].

When a mobile device is web services enabled

and engages in a conversation with a service

provider, it becomes necessary to define a

choreography for the collaborating parties. For

this purpose, the WS-CDL can be used to provide

the rules of engagement between the mobile client

and the web service provider. In this mobile

services environment, however, connection may

be lost or the mobile device may move into out-

of-service area any time during the conversation,

and this may prevent the conversation from

successful completion particularly when the

conversation is long-running or involves user

interactions. Accordingly, performing mere step

by step execution of a choreography specification

defined fbr the mobile client may produce

一273 —

unsatisfactory performance results. introduced.

2. Preference Model for WS-CDL
This section introduces the proposed preference

specification model for WS-CDL. WS-CPP

enables web service clients to express their

interaction preferences in a standard format that

can be delivered to and interpreted by service

providers. Given a WS-CDL description that

represents a set of valid interaction sequences,

WS-CPP allows conversation preferences to be

associated with some of the interactions defined

in the WS-CDL so that they are not required

during actual conversations. Specifically, from the

WS-CDL entities, we identify a set of activities

that can be associated with preferences as follows.

An activity notation in WS-CDL is the lowest

level component of a choreography, and it is used

to define an activity as either an ordering structure,

a work unit notation, or a basic activity. An

ordering structure consists of sequence, parallel,

and choice, and it combines activities with other

ordering structures in a nested way in order to

specify the ordering rules of activities. All

activities enclosed within the sequence need to be

executed sequentially in the same order that they

are defined, and are not allowed to be skipped. In

contrast, the parallel structure contains one or

more activity notations that are enabled

concurrently, and a preference can be introduced

to specify the execution priorities among the

activity notations within the parallel structure.

Similarly, when two or more activity notations are

specified in a choice element, requiring only one

of them to be performed, a preference on which

activity notation is to be selected can be

As fbr the basic activity which contains

interaction, perform, assign, silent action, no

action, and finalize activities, we identify two

basic activities that can be associated with

preferences. The interaction activity is used to

exchange information between collaborating

parties, and in particular the message exchange is

specified in exchange element within the

interaction. • Therefore, a preference indicating

whether a specific message exchange should be

carried out or not can be defined fbr the exchange

element. On the other hand, for the assign activity

that is used to create or change the value of one or

more variables in a WS-CDL document, we

define a preference that allows the value of a

variable to be assigned beforehand in order to

make some of the interactions defined in the

choreography unnecessary.

Having discussed the conversation preferences

defined in WS-CPP, we now proceed to describe

a required run-time behavior when a WS-CPP

profile is to be used. First, we assume that a WS-

CDL document is publicly available from a web

service provider so that it can be referred to by a

client application's developer. The developer

writes a client application of which the interaction

behavior conforms to the requirements specified

in the service provider's WS-CDL. Subsequently,

a WS-CPP document that reflects the client

application's preferred conversation behavior can

be defined by a user agent, and then it can be

transmitted to a service provider when an actual

conversation starts. In the meantime, after the

service provider has received a WSCPP profile, it

will refer to the preference specifications in the

-274 -

WS-CPP throughout the conversation. That is,

while the service provider engages in a

conversation according to the pre-defined WS-

CDL, it needs to look up the preference definition

from the WS-CPP document for each activity

notation that can be associated with a preference

so that it can seamlessly interact with the client

without issuing any exceptions. The resulting

behavior will be that the number of messages

exchanged between the client and the service

provider under the proposed WS-CPP framework

will be 시ways equal to or less than that of the

original WS-CDL definition.

3. WS-CDL Structure
A WS-CPP document consists of a set of

definitions. The top level 이ement of a WS-CPP

document is preference that governs the

interaction behavior of the service provider and

client. A preference may contain zero or more of

the following entities: interactionskip,

choicePriority, and orderPriority.

interactionskip of WS-CPP represents a

preference on the exchange element within an

interaction activity in the WS-CDL. The target

exchange element is referred to by use of an

XPath expression pointing to the element in the

WSCDL document. It indicates that a message

expected to be delivered to a receiver will not be

actually sent. Instead, the receiver should presume

as if it were received. This is achieved by

providing all data necessary from the message

with preAssignment element which pre­

assigns a value to a variable defined in a WS-

CDL document so that the actual interaction

becomes not necessary. In order to distinguish the

client-initiated exchange from the service

provider initiated exchange, we use the attnbute

type. The syntax of the interactionskip

construct is:
<interactionskip name = "ncname"

guard = "xsd:boolean XPath-expression"?
target = "XPath expression to an exchange tag"
type =■ "ignore" I
<preAssignment name - "ncname"

target = "XPath expression to a variable name"
<value variable - string I number I "XPath expression”/〉

</preAssigrunent>*
</interactionSkip>

The choicePriority allows the selection

to be prespecified when the client is required to

make a decision among the available choices

defined in a WS-CDL specification. A priority can

be defined in terms of either a specific order

within choiceactivity or an XPath expression that

refers to an activity element. The syntax of

choicePriorityelement is:

<choicePriority name = "ncname"
target = "XPath expression to a choice tag"
selection = "number" I "XPath expression"/〉

</choicePriority>

Finally, orderPriority in WS-CPP

corresponding to the parall이 of the WS-CDL

specifies the clienfs execution ordering priority

among the activities that can be enabled in

parallel. The priorities among the activities are

specified in terms of the order in which the

priority element appears within the

orderPriority. The syntax is defined as

follows:
〈orderpriority name = "ncname"

target = "XPath expression to a parallel tag”
priority = "number" | "XPath expression"/〉+

</choicePriority>

3. WS-CPP Example
In this section, we consider the following

simple scenario to demonstrate a usage of WS-

CPP: A mobile device may be temporarily within

一275 —

the range of wireless LAN which provides two

types of on-demand multimedia streaming

services, namely a regular service and a premium

service. In order to start the service, the device

first needs to invoke the service, and then it is

required to deliver some context information such

as the screen size and the media handling

capability of the device to the service provider.

For simplicity, we assume that o미y the screen

size information is required. When the service

provider receives the configuration data, it

immediately replies back to the client with ACK

message, and then it checks if the configuration is

valid. In case that the configuration is not valid,

the service provider notifies the client and the

choreography compete. Otherwise, the device

may choose the service type, and subsequently the

choreography completes after the service provider

sends ACK message. The example scenario is

illustrated in Figure 1, and the corresponding

service provider's WS-CDL document is sketched

in Figure 2.

Figure 1: Example scenario

Pl The client wants to skip the interaction for

sending configuration data by providing

them in the WS-CPP document.

P2 The client prefers not to receive an ACK

message for the configuration data

transmission.

P3 The client prefers the premium service to the

regular service

<choreography name="MultimediaServiceChoreo''>

<sequence>
<interaction>

<exchange>Send Configuration Data</exchange>

<exchange>ACK</exchange>

</interaction>

<choice>
<choice>

<interaction>
<exchange>Request Premium Service</exchange>
<exchange>ACK</exchange>

</interaction>
<interaction>

<exchange>Request Regular Service</exchange>

<exchange>ACK</exchange〉

</interaction>

</choice>
〈interaction〉

<exchange>Invalid Configuration Data</exchange>

</interaction>

</choice>

</sequence>
〈/choreography〉

Figure 2: WS-CDL definition for the
example

The resulting WS-CPP specification is given in

Figure 3. In this example WS-CPP, the preference

Plisrepresented by interactionskip where

the target WS-CDL element that needs to be

skipped is defined by use of an XPath expression

and the necessary configuration data is pre­

defined in the preAssignment element. Since

the WS-CPP document is delivered to the service

provider when the client invokes the service, the

actual interaction in a conversation becomes

unnecessary.
The second interactionskip element of

the WS-CPP profile expresses the preference P2.

The type filter is used for this case as the

message is supposed to be se마 by the service

provider. Similarly, the preference P3 is specified

by indicating that the first interaction within

the choice element of the WS-CDL document

-276 -

needs to be selected. Hence, it is clear from this

example that the WS-CPP provides an effective

means to flexibly reduce the number of messages

exchanged between the mobile clients and service

providers.

〈package name=-"MultimediaServiceCPP"

〈preference nameZmultimediaServicePEf1*

root="true"
refer-"cns:/package/choreography[1]">
〈interactionskip name="skipconfiguration"

target-"/sequence[1]/interaction【1]/exchange[1]

type=*"ignore">
<preAssignment name-"screenSize"

target-"cns:/screenSize"
<value variable=M240x320xl8"/>

</preAssignment>

〈/interactionskip>
〈interactionskip name="skipConfigurationACK"

target-"/sequence[1]/interaction ⑴/exchange[2]"

type-"filter"/>
<choicePriority namez^pref合rPremiumS会rvic으”

target-"/sequence[1]/choice[1]/choice[1]">

〈priority variable-"/interaction[1]"/>

</choicePriority>
〈/preference〉

〈/package〉

Figure 3: WS-CPP definition for the
example

5. Con시usion
A conversation preference specification

framework for WS-CDL, called WS-CPP, was

proposed to enhance the performance of mobile

web services applications as well as to support

flexibility in web services conversation. WS-CPP

allows some of the interactions defined in a WS-

CDL document to be skipped while satisfying the

rules of conversation required by service

providers.

In addition, it provides a means for the mobile

clients to pre-specify their preferences on the

choices and the concurrencies that can arise

during a conversation with service providers. We

are currently working on to extend the current

work so that it can support additional WS-CDL

features such as loops and exceptions. Further

work is also required to specify a protocol for

delivering WS-CPP specifications and to specify

how a profile should be processed by a WS-CDL

processor.

References

[1] N. Kavantzas, D. Burdett, G. Ritzinger, T.
Fletcher, and Y. Lafon. (2004) Web services

choreography description language version

I. 0. [Online]. Available:

http://www.w3 .org/TR/2004/WD-ws-cdl-10-

20041217/

[2] Microsoft Corp. (2004) XML web services
on a chip. [Online].

Available

sible/defoult.asp

:http://research.microsoft.com/invi

[3] UPnP Forum. (2005) UPnP 2.0. [Online].

Available:http://www.upnp.org/

[4] T. Goddard. (2005) Using the network
configuration protoc이 (NETCONF) over the

simple object access protocol (SOAP).

[Online]. Available:

http://www.ops.iet£org/netcon^

[5] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto,

J. H^elm, M. H. Butler, and L. Tran. (2004)

Composite capability/preference profiles

(CC/PP): Structure and vocabularies 1.0.

[Online]. Available:

http://www.w3 .org/TR/2004/REC-CCPP-

structvocab-20040115/

[6] C. Peltz, “Web services orchestration and

choreography", IEEE Computer, Volume: 36,

Issue: 10, Oct. 2003, pp. 46 一 52.

-277 -

http://www.w3
:http://research.microsoft.com/invi
Available:http://www.upnp.org/
http://www.ops.iet%25c2%25a3org/netcon%255e
http://www.w3

