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Abstract

  The Fieller-Creasy problem involves statistical inference about the ratio of 

two independent normal means. It is difficult problem from either a frequentist 

or a likelihood perspective. As an alternatives, a Bayesian analysis with 

noninformative priors may provide a solution to this problem.

  In this paper, we extend the results of Yin and Ghosh (2001) to unbalanced 

sample case. We find various noninformative priors such as first and second 

order matching priors, reference and Jeffreys' priors.

  The posterior propriety under the proposed noninformative priors will be 

given. Using real data, we provide illustrative examples. Through simulation 

study, we compute the frequentist coverage probabilities for probability 

matching and reference priors. Some simulation results will be given.
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1. Introduction

  The Fieller-Creasy problem involves statistical inference about the ratio of 

two independent normal means. It is difficult problem from either a frequentist 

or a likelihood perspective. As an alternatives, a Bayesian analysis with 

noninformative priors may provide a solution to this problem.
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  Bayesian analysis for the original Fieller-Creasy problem based on 

noninformative priors began with Kappenman et al. (1970), and was addressed 

subsequently in Bernardo (1977), Sendra (1982), Mendoza (1996), Stephens 

and Smith (1992), Liseo (1993), Phillipe and Robert (1994), Reid (1995) and 

Berger et al (1999). All these papers considered either Jeffreys' prior or 

reference priors. A Bayesian analysis based on proper priors is given in 

Carlin and Louis (2000).

  Recently, Yin and Ghosh (2001) developed noninformative priors for this 

problem and studied the Bayesian and likelihood based inference. But their 

study were too restrictive in the sense that they developed the Bayesian 

inference under the condition that the sample size of the two population is 

same. That their results can apply only a balance sample case. 

  But in the real fields, data with unbalanced cases are common. So, we feel 

strong necessities to extend their study to unbalanced data.

  The present paper focuses on developing noninformative priors for 

Fieller-Creasy problem. We consider Bayesian priors such that the resulting 

credible intervals for the ratio of the two normal means have coverage 

probabilities equivalent to their frequentist counterparts. Although this 

matching can be justified only asymptotically, our simulation results indicate 

that this is indeed achieved for small or moderate sample sizes as well.

  This matching idea goes back to Welch and Peers (1963).  Interest in such 

priors revived with the work of Stein (1985) and Tibshirani (1989). Among 

others, we may cite the work of Mukerjee and Dey (1993), DiCiccio and Stern 

(1994), Datta and Ghosh (1995a,b, 1996), Mukerjee and Ghosh (1997).

  On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo 

(1989,1992) extended Bernardo's (1979) reference prior approach, giving a 

general algorithm to derive a reference prior by splitting the parameters into 

several groups according to their order of inferential importance. This 

approach is very successful in various practical problems. Quite often 

reference priors satisfy the matching criterion described earlier.



73Noninformative Priors for Fieller-Creasy Problem using Unbalanced Data

  In this paper, we extend the results of Yin and Ghosh (2001) to unbalanced 

sample case. We find various noninformative priors such as first and second 

order matching priors, reference and Jeffreys' priors.

  The posterior propriety under noninformative priors will be given. Using 

real data, we provide illustrative examples. Through simulation study, we 

compute the frequentist coverage probabilities for probability matching and 

reference priors. Some simulation results will be given.

2. Noninformative priors

  Let X 1,X 2,…,Xn and Y 1,Y 2,…,Ym be random samples from N(μ,σ 2) and 

N(θμ,σ 2), respectively. And Xi and Yj are independently distributed. Here 

our parameter of interest is θ . Then the likelihood function for ( θ,μ,σ 2 ) is 

given by

L(θ,μ,σ) = (σ 2π)
- n
exp {- 1

2σ 2
∑
n

i=1
(x i-μ)

2}
×( σ 2π) -mexp {- 1

2σ 2
∑
m

j=1
(y j-θμ)

2}
∝ σ - Nexp {- 1

2σ
2 [ ∑

n

i= 1
(x i-μ)

2+ ∑
m

j=1
(y j-θμ)

2]},
where N= n+m .

  Consider the following transformation for (θ,μ,σ 2 ).

θ 1=θ, θ 2= μ(n+mθ
2) 1/2 and θ 3= σ

2.

Then the likelihood function for ( θ 1, θ 2,θ 3) can be re-expressed as

L(θ 1,θ 2,θ 3)∝θ
- N/2
3

× exp{- 1
2θ 3 [ ∑

n

i= 1
(x i-θ2(n+mθ

2
1)
- 1/2) 2+ ∑

m

j= 1
(y j-θ1θ 2(n+mθ

2
1)
- 1/2) 2]}.

From the above likelihood function, the Fisher information matrix is given by

I=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳

θ - 13 θ
2
2nm(n+mθ

2
1)
- 2 0 0

0 θ - 13 0

0 0
N

2θ23

.
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Following Tibshirani (1989), the class of first order matching prior is given by

π ( 1)M (θ 1 ,θ 2,θ 3)∝∣θ2∣θ
- 1/2
3 (n+m θ21)

- 1g(θ 2,θ 3),

where g(⋅,⋅) is an arbitrary positive and differentiable function in its 

arguments.

  Since the class of first order matching prior is quite large, one needs to 

narrow down this prior. Specially, Murkerjee and Ghosh (1997) developed a 

second order matching prior. Among the first order matching prior, the second 

order matching prior satisfies the following differential equation.

1
6
g(θ 2,θ 3)

∂
∂θ 1

{ I
- 3/2
11 L 1, 1, 1}+ ∑

3

v= 2
∑
3

s= 2
{ I
- 1/2
11 L 11sI

sv
g(θ 2,θ 3)}= 0,

where I ij is the i-th and j-th element of Fisher information matrix, I sv is the 

s-th and v-th element of inverse of Fisher information matrix,

L 1, 1, 1= E[ (
∂ logL(θ 1,θ 2,θ 3)

∂θ 1 )
3

]
and

L ijk= E[
∂ 3logL( θ 1,θ 2,θ 3)

∂θ i∂θ j∂θ k ].
From the above likelihood function and after long algebraic calculation, one 

can get

I
22
=θ 3, I

23
= I

32
=0,I

33
=

2θ
2
3

n+m
,

L 1, 1, 1=0,L 112=-nm θ 2θ
- 1
3 (n+m θ

2
1)
- 2 and 

L 113=nm θ
2
2θ
- 2
3 (n+m θ

2
1)
- 2.

Then the differential equation reduces to

-θ
1/2
3

∂
∂θ 2

g(θ 2,θ 3)+
2

n+m
∂
∂θ 3

θ 2θ
1/2
3 g(θ 2,θ 3)=0.

  A solution of the above equation is

g( θ 2,θ 3)=θ
- 1/2
3 h(

θ22
n+m

+θ3),

where h(⋅) is an arbitrary positive differentiable function in its arguments. 

So, if one takes h(
θ22
n+m

+θ3)=1, then the second order probability 
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matching prior is given by

π
( 2)
M (θ 1 ,θ 2,θ 3)=∣θ2∣θ

- 1
3 (n+mθ

2
1)
- 1
.

  Remark 1. The second order matching prior given in the above is not an 

alternative matching prior introduced by Mukerjee and Reid (1999). They 

suggested the conditions which can verify whether a second order matching 

prior satisfied an alternative coverage matching prior or not. But among their 

conditions, a second matching prior satisfies the following equation to be an 

alternative

coverage matching prior. The equation is

I
- 3/2
11 L 111= 0.

But in our case,

L 111=
6m 2nθ 1θ

2
2

(n+mθ
2
1)
3
θ 3
.

So,

I - 3/211 L 111= 6 n
- 1m 1/2θ 1θ

- 1
2 θ

1/2
3 .

This leads to

∂
∂θ 1

(I
- 3/2
11 L 111)=6n

- 1
m

1/2
θ
- 1
2 θ

1/2
3 ≠0.

  Remark 2. Datta, Ghosh and Mukerjee (2000) showed that if I - 3/211 L 111
 does 

not depend on θ 1, then the second order matching prior is highest posterior 

distribution (HPD) matching prior within the first order matching priors. So, 

we can conclude that the second order matching prior is not a HPD matching 

prior.

  Following Datta and Ghosh (1995), the reference prior introduced by Berger 

and Bernardo (1989) can be obtained easily from the information matrix, if 

parameters orthogonality is satisfied.

From the information matrix, the reference priors by the order of inferential 

importance are give as follows:
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 the order of importance reference priors

( {θ1}, {θ2}, {θ3}) π 1R(θ1,θ2,θ3)∝(n+mθ
2
1)
-1θ-13

( {θ1,θ2}, {θ3}) π 2R(θ1,θ2,θ3)∝(n+mθ
2
1)
-1θ-13 ∣θ2∣

({θ1,θ2,θ3}) π 3R(θ1,θ2,θ3)∝(n+mθ
2
1)
-1θ-23 ∣θ2∣

( {θ1, {θ2,θ3 }),( {θ1,θ3 }, {θ2}),({θ2,θ3}, {θ1}) π 4R(θ1,θ2,θ3)∝(n+mθ
2
1)
-1θ-3/23

Note that, the prior π 1R is called the one-at-a-time reference prior. The two 

group reference prior π 2R is actually the second order matching prior. And π 3R 

is Jeffreys' prior.

3. Propriety of Posteriors

  In this section, we will show the propriety of posterior distributions induced 

by various noninformative priors given in the previous section. The 

noninformative priors proposed in the previous section can be represented as 

a general form as follows.

π G(θ 1 ,θ 2,θ 3)∝(n+mθ
2
1)
- 1
∣θ 2∣

a
θ
- b
3 ,

where a= 0,1 and b=1/2,1,3/2,2 .

Using the above prior, the joint posterior of θ 1 , θ 2 and θ 3 is given by

π G( θ 1,θ 2,θ 3∣ x, y)∝(n+mθ
2
1)
- 1
∣θ 2∣

a
θ
- (N/2+ b )
3

× exp {- 1
2θ 3
[s x+ s y+n( x-θ2(n+mθ

2
1)
- 1/2) 2+m( y-θ1θ 2(n+mθ

2
1)
- 1/2) 2]},

where s x= ∑
n

i=1
(x i- x) 2 and s y= ∑

n

i=1
(y i- y)

2.

Let θ=θ 1,μ=θ2(n+mθ
2
1)
-1/2 and τ=θ - 13 , then the above joint posterior 

changes to

πG(θ,μ,τ∣ x, y)∝∣μ∣
a(n+mθ2)

a-1
2 τ

N
2
+b-2

exp {- τ
2 [ s x+s y+n( x-μ)

2+m( y-θμ)2]}.

  Now, we will consider the propriety of the joint posterior distribution.
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  Theorem 1. If N
2
+ b-

3
2
> 0, then the joint posterior distribution of θ , μ 

and τ is proper.

  Proof. For the convenance, we consider the proof with respect to the 

values of a.

i) First, when a=0, the posterior is given by

πG(θ,μ,τ∣ x, y)∝(n+mθ
2
)
-
1
2
τ
N
2
+b-2

exp{- τ2 [sx+sy+n( x-μ)
2
+m( y-θμ)

2
]}.

Integration with respect to μ is

πG(θ,μ∣ x, y)∝(n+mθ
2
)
-1
τ

N
2
+b-

5
2
exp{- τ2 (sx+sy+

nm( y-θ x)
2

n+mθ
2 )}.

And the integration with respect to τ is, if N
2
+b-

3
2
>0,

π G(θ∣ x, y) ∝ (n+mθ
2) - 1[ s x+ s y+ nm( y-θ x) 2

n+mθ 2 ]
- (

N
2
+ b-

3
2
)

∝ (n+mθ
2
)
- 1[1+ nm( y-θ x) 2

(n+mθ 2)(s x+ s y) ]
- (

N
2
+ b-

3
2
)

≤ (n+mθ 2) - 1,

since 

[ 1+ nm( y-θ x) 2

(n+mθ
2
)(s x+ s y) ]

- (
N
2
+ b-

3
2
)

≤1.

Now the integration with respect to θ is

⌠
⌡

∞

-∞

1

n+mθ
2 dθ=

nm
π
.

Therefore, posterior is proper when a=0.

ii) When a=1, the joint posterior is given by
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πG(θ,μ,τ∣ x, y) ∝ ∣μ∣τ
N
2
+ b-2

exp {- τ
2 [ s x+ s y+n( x-μ)

2+m( y-θμ) 2]}
∝ ∣μ∣exp {- τ(n+mθ 2)

2 (μ- n x+θm y

n+mθ 2 )
2

}
×τ

N
2
+ b-2

exp {- τ
2 ( s x+ s y+ nm( y-θ x) 2

n+mθ
2 )}.

Note that

⌠
⌡

∞

-∞
∣x∣exp {- 1

2σ
2 (x-μ)

2}dx=σ2 (2 exp {- μ2

2σ
2 }+ 2π

μ 2

σ
2 Erf[ μ 2

2σ
2 ]),

where Erf(a)=⌠⌡

a

0

1
2π
exp {-

x 2

2
}dx, with a > 0 .

Using the above equation, the integration with respect to μ is

⌠
⌡

∞

-∞
∣μ∣exp {- τ(n+mθ2)

2 (μ- n x+θm y

n+mθ
2 )

2

}dμ
= [τ(n+mθ2)]

-1{2exp {- τ(n x+θm y)
2

2(n+mθ
2
) }+ 2π

τ(n x+θm y)
2

2(n+mθ
2) Erf( τ(n x+θm y)

2

2(n+mθ
2) )}.

Since τ > 0 , exp{- τ(n x+θmy)
2

2(n+mθ2) }≤1 and Erf(⋅)≤1 , the joint posterior 

distribution of θ and τ is bounded by

πG(θ,τ∣ x, y) ≤
τ
N
2
+b-3

n+mθ2 {2+ 2π
τ(n x+mθ y)

2

(n+mθ2) }exp {- 12 τ( s x+s y+ nm( y-θ x)
2

n+mθ2 )}
= 2

τ
N
2
+b-3

n+mθ2
exp {- 12 τ( s x+s y+ nm( y-θ x)

2

n+mθ2 )}
+ 2π

τ
N
2
+b-

5
2

n+mθ2
(n x+mθ y)

2

(n+mθ2)
exp {- 12 τ( s x+s y+ nm( y-θ x)

2

n+mθ2 )}.
Integration with respect to τ in the right side of the last equality is 

proportional to

(n+mθ 2)- 1[ s x+ s y+ nm( y-θ x) 2

n+mθ
2 ]

- (
N
2
+ b-2)

+(n+mθ 2)- 1[s x+ s y+ nm( y-θ x) 2

n+mθ
2 ]

- (
N
2
+ b-

3
2
)

(n x+mθ y) 2

n+mθ
2 .

Now, the first term of the above quantity is proportional to 
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(n+mθ
2
)
- 1[ s x+ s y+ nm( y-θ x) 2

n+mθ 2 ]
- (

N
2
+ b-2)

∝(n+mθ
2
)
- 1[1+ nm( y-θ x) 2

(n+mθ 2)(s x+ s y) ]
- (

N
2
+ b-2)

≤(n+mθ 2)- 1,

Integration with restpect to θ of the right side of the last inequality is finite 

as is shown. And the second term is proportional to 

[ 1+ nm( y-θ x) 2

(n+mθ 2)(s x+ s y) ]
- (

N
2
+ b-

3
2
)

∣n x+mθ y∣

(n+mθ 2)
3
2

≤
∣n x+mθ y∣

(n+mθ 2)
3
2

≤
∣n x∣

(n+mθ
2
)
3
2

+
∣mθ y∣

(n+mθ
2
)
3
2

.

Since 

⌠
⌡

∞

-∞

1

(n+mθ
2
)

3
2

dθ=
2

n m
 and ⌠

⌡

∞

-∞

∣θ∣

(n+mθ
2
)

3
2

dθ=
2

m n
,

this completes the proof.

  Theorem 2. Under the pror πG, the marginal posterior density function of θ 

is given by, for -∞ < θ < ∞ ,

πG(θ∣ x, y)=

⌠
⌡

∞

-∞

∣μ∣
a
(n+mθ

2
)

a-1
2

[sx+syn( x-μ)
2
+m( y-θμ)

2
]

N
2
+b-1

dμ

⌠
⌡

∞

-∞

⌠
⌡

∞

-∞

∣μ∣
a
(n+mθ

2
)

a-1
2

[sx+syn( x-μ)
2
+m( y-θμ)

2
]

N
2
+b-1

dμdθ

,

if N
2
+b-

3
2
>0.

  Proof. It is straightforwards.
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4. Simulation results

  In this section, we perform some simulations to show the frequentist 

coverage probabilities with respect to the priors given in the previous section. 

We estimate the frequentist coverage probability by investigating the credible 

interval of the marginal posterior density of θ under the proposed priors πG 

for several values of θ, n and m. We want to show that the frequentist 

coverage of a (1-α)th posterior quantile should be close to 1-α.

  The computation of the coverage probability is performed by the following 

method. First, we fix the values for μ, σ and θ. For prespecified value α, 

here α is 0.05 (0.95), let θ
π
(α∣X, Y) be the posterior α-quantile of θ given 

X and Y. That is F π(θ π (α∣ X, Y)∣ X, Y)= α, where Fπ(⋅∣X, Y) is the 

marginal posterior distribution function of θ under the prior π. Then the 

frequentist coverage probability of this one sided credible interval of θ is

P (θ,μ,σ)(α;θ)≡P (θ,μ,σ)(θ≤θ
π(α∣X, Y)).

The estimated P (θ,μ,σ)(α;θ) when α=0.05(0.95) is shown in Table 1. For fixed 

n,m and (θ,μ,σ), we take 10,000 independent random samples of X and Y. 

Note that under the prior π, for fixed X and Y, 

θ≤θπ(α∣ X, Y)  ⇔  F π(θ π (α∣ X, Y)∣ X, Y)≤α.

So, under the prior π, P (θ,μ,σ)(α;θ) can be estimated by the relative frequency 

of F π(θ π (α∣ X, Y)∣ X, Y)≤α. The results are given in Table 1.

  It is clear from the table that the second order matching prior performs 

better than any other priors in matching the target coverage probabilities. And 

the reference prior π4R is comparable to the second order matching prior.

  It appears also from our results that when ∣μ∣=0.1, the values of the 

frequentist coverage probabilities are far from target probabilities. The poor 

performance of all the priors for certain regions of the parameter value is not 

very surprising. Gleser and Hwang (1987, Theorem 1) show that based on 

any sample of arbitrary but fixed size n, there is a positive probability that 

confidence interval is infinite set. In our case, this poor performance happens 

when ∣μ∣≈0.
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Table 1. The estimated coverage probabilities 

μ=0.1 σ=0.5 θ=0.1

n m

First-Order

a=1, b=0.5

Jeffreys

a=1, b=2

Reference

a=0, b=1.5

Second-Order

a=1, b=1
0.05       0.95 0.05       0.95 0.05       0.95 0.05       0.95

5 5 0.0033    0.9933 0.0114    0.9814 0.0049    0.9908 0.0048    0.9894

5 10 0.0039    0.9921 0.0050    0.9856 0.0023    0.9937 0.0030    0.9910

10 5 0.0022    0.9933 0.0087    0.9849 0.0040    0.9922 0.0053    0.9897

10 10 0.0038    0.9921 0.0073    0.9863 0.0032    0.9935 0.0047    0.9900

10 15 0.0032    0.9925 0.0046    0.9894 0.0022    0.9944 0.0036    0.9914

15 10 0.0051    0.9913 0.0078    0.9876 0.0044    0.9936 0.0058    0.9904

15 15 0.0035    0.9888 0.0048    0.9846 0.0029    0.9910 0.0037    0.9878

15 20 0.0063    0.9869 0.0062    0.9878 0.0031    0.9932 0.0048    0.9900

20 15 0.0042    0.9910 0.0087    0.9836 0.0048    0.9894 0.0078    0.9855

20 20 0.0075    0.9862 0.0106    0.9825 0.0055    0.9896 0.0083    0.9853

 

μ=1.0 σ=0.5 θ=0.1

n m

First-Order

a=1, b=0.5

Jeffreys

a=1, b=2

Reference

a=0, b=1.5

Second-Order

a=1, b=1
0.05       0.95 0.05       0.95 0.05       0.95 0.05       0.95

5 5 0.0385    0.9635 0.0733    0.9327 0.0545    0.9483 0.0483    0.9516

5 10 0.0416    0.9618 0.0641    0.9414 0.0497    0.9535 0.0489    0.9539

10 5 0.0383    0.9596 0.0572    0.9395 0.0471    0.9493 0.0483    0.9530

10 10 0.0442    0.9525 0.0596    0.9403 0.0531    0.9462 0.0501    0.9480

10 15 0.0431    0.9588 0.0565    0.9481 0.0487    0.9535 0.0494    0.9547

15 10 0.0453    0.9584 0.0575    0.9466 0.0519    0.9519 0.0493    0.9547

15 15 0.0441    0.9498 0.0526    0.9425 0.0483    0.9469 0.0491    0.9476

15 20 0.0483    0.9525 0.0547    0.9439 0.0504    0.9483 0.0496    0.9502

20 15 0.0460    0.9545 0.0563    0.9466 0.0513    0.9514 0.0497    0.9515

20 20 0.0462    0.9486 0.0521    0.9409 0.0492    0.9457 0.0498    0.9507
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