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Abstract

An infinite dam with compound Poisson inputs and a 
state-dependent release rate is considered. We build the Kolmogorov's 
backward differential equation and solve it to obtain the Laplace 
transforms of the first exit times for this dam. 
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1. Introduction

We consider a dam of infinite capacity which water flows in according to a 

compound Poisson process {A(t),t ≥0} and flows out with a release rate r(x) 

depending on the present content x of the dam. The compound Poisson 

process {A(t),t ≥0} can be expressed by

A(t)= ∑
N( t)

n=1
Sn, 

where {N( t),t≥0} is a Poisson process with intensity λ and S1, S2,… are 

i.i.d. random variables with common distribution G. We assume that G(0)=0 

and Sn are independent of the arrival process {N( t),t≥0}. If we let X(t) be 

the content at time t, then its sample paths satisfy the following storage 

equation:

X( t)= x+A( t)-⌠⌡

t

0
r(X(s))ds,  t≥0

with X(0)=x being the initial content of the dam. We assume that r(0)=0 

and r(⋅) is strictly positive, left continuous, and has a strictly positive right 

limit at every point in (0,∞). We also assume that for any 0 < x < ∞ ,

⌠
⌡

x

0

1
r(y)

dy<∞, 

meaning that level zero can be reached in a finite amount of time from any 

level x > 0 .

Harrison and Resnick(1976) derived the first exit probability that the content 
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exceeds one specified level before it reaches the other specified level, 

starting from some level between them. For the case of constant release rate, 

Perry et al.(2002) found the Laplace transform of the first exit times for the 

infinite dam while Bae et al.(2001) obtained the Laplace transform of the wet 

period of the finite dam. Kinateder and Lee(2000) determined explicitly the 

expectation of the first exit time by adopting the martingale arguments in 

Rosenkrantz(1983) when the release rate is constant. Kella and Stadje(2001) 

especially computed the Laplace transform of the first hitting times for the 

dam with exponential jumps and linear release rate.

In this paper, we extend the results in Bae et al.(2001) of constant release 

rate into the case of the general release rate function. In the following 

section, we obtain the Laplace transform of the first exit times for the infinite 

dam. To do so, we derive an integro-differential equation based on the 

method of Kolmogorov's backward differential equation and solve it in terms 

of a certain positive kernel. 

2. Laplace transforms of the first exit times

We assume that 0≤ α < β < ∞ . For α≤ x≤ β , we define

T α,β(x)= inf { t≥0|X( t)∉(α,β], X(0)=x}
representing the first exit time from (α,β] for the process {X( t),t≥0} 

starting at X(0)=x. Then, the Laplace transform of T α,β(x) can be given by

φ α,β(x,θ): =E[e
-θT α,β(x)]

= φ1 α,β (x,θ)+ φ
2
α,β (x,θ),   θ≥0,

where

φ1 α,β (x,θ):=E[e
-θT α,β(x)1 {X(T α,β (x))> β}]

                      (1)

and

φ2 α,β (x,θ):=E[e
-θT α,β(x)1 {X(T α,β(x))=α}].

                     (2)

  

Here if we define

T1 α,β (x)={∞    if  X(T α,β(x))=α,
T α,β(x)   if  X(T α,β(x))>β,

and

T2 α,β (x)={T α,β(x)   if  X(T α,β(x))=α,∞   if  X(T α,β(x))>β,

then the functions φ1α,β and φ2α,β of (1) and (2) are the Laplace transforms of  

 T1α,β(x) and T2α,β(x), respectively, given by

φ1 α,β (x,θ)=E[e
-θ T1 α,β (x)],  θ>0

and
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φ2 α,β (x,θ)=E[e
-θ T2 α,β (x)],  θ>0.

Let F1 α,β (x,t)=P{ T1 α,β (x)≤t}. Clearly T1 α,β (α)=∞ and then F1 α,β(α,t)=0   

for all t≥0 . For α < x≤ β , we employ the method of Kolmogorov's backward 

differential equation to get F1α,β(x,t). Conditioning on whether an input of 

water into the dam occurs or not during the infinitesimal interval (0,Δt] gives

T
1
α,β (x)={

T
1
α,β (x-r (x)Δt)+Δt,  if  no  inputs  occur,

T
1
α,β (x-r (x)Δt+S)+Δt,  if an input occurs and S≤β-x+r(x)Δt

Δt,  if an input occurs  and S>β-x+r(x)Δt
where S is the generic random variable with distribution G. Since the 

probability that two or more inputs occur during (0,Δt], we have that, for 

t > 0 ,

F
1
α,β (x,t)= (1-λΔt) F

1
α,β (x-r(x)Δt,t-Δt)

+λΔt⌠⌡

β-x+r(x)Δt

0
F
1
α,β (x-r(x)Δt+z,t-Δt)dG(z)

+λΔt[1-G(β-x+r(x)Δt)]+o(Δt),

where o(Δt)/Δt goes to zero as Δt→0. Dividing each side of the above 

equation by Δt and letting Δt go to zero yield

 r(x)
∂
∂x
F
1
α,β (x,t)+

∂
∂t
F
1
α,β (x,t)= -λ F

1
α,β (x,t)+λ

⌠
⌡

β-x

0
F
1
α,β(x+z,t)dG(z)

+λ[1-G(β-x)].

    (3)

Putting y=β-x, F1̃ α,β (y,t)=F
1
α,β (β-y,t) and r̃( y)=r(β-y) for the 

convenience of analysis, the equation (3) can be rewritten in

- r̃(y)
∂
∂y
F
1̃
α,β (y,t)+

∂
∂t
F
1̃
α,β (y,t)= -λ F

1̃
α,β (y,t)+λ

⌠
⌡

y

0
F
1̃
α,β(y-z,t)dG(z)

+λ(1-G(y)),   0≤y<β-α

  (4)

and the Laplace transform φ1α,β(x,θ) of T1α,β(x) can also be written by

φ
1
α,β (x,θ)=

⌠
⌡

∞

0
e
-θt
dt F

1
α,β(x,t)

= ⌠⌡

∞

0
e
-θt
dt F

1̃
α,β(y,t)| y=β-x

:= φ
1̃
α,β(y,θ).

Since φ
1̃
α,β (y,θ)=θ

⌠
⌡

∞

0
e
-θt
F
1̃
α,β(y,t)dt, by multiplying θe-θt on both sides of 

the equation (4) and integrating both sides with respect to t from 0 to ∞, we 

have the following integro-differential equation for φ1̃α,β :

∂
∂y
φ
1̃
α,β (y,θ)=f1(y,θ)+

⌠
⌡

y

0
K(y,z,θ)dz φ

1̃
α,β(z,θ),                (5)
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where

f1(y,θ):= φ1̃ α,β (0,θ)[θ+λ(1-G(y))]-λ(1-G(y)) r̃(y)             (6)

and

K(y,z,θ):=
θ+λ[1-G(y-z)]

r̃( y)
,

where parameters α and β are omitted in the notations of functions f1(⋅) 

and   K(⋅) for the simplicity.

In a manner analogous to that in Harrison and Resnick(1976), let

K 1(y,z,θ)=K(y,z,θ),  0≤z< y< β-α, θ≥0
and define its iterates recursively by

K
n+1
(y,z,θ) = ⌠

⌡

y

z
K
n
(y,w,θ)K

1
(w,z,θ)dw

= ⌠
⌡

y

z
K
1
(y,w,θ)K

n
(w,z,θ)dw,  0≤z<y<β-α,  θ≥0,

for n≥1 . Using the bound K1(y,z,θ)≤(θ+λ)/ r̃( y), it follows easily by 

induction that

K
n+1
(y,z,θ)≤

(θ+λ)
n+1
[⌠⌡

y

z

1

r̃(w)
dw]

n

r̃( y)n!
,  0≤z<y<β-α,  θ≥0,

for all n≥1 . Thus the kernel

K
*
(y,z,θ):=∑

∞

n=1
K
n
(y,z,θ)

is well-defined. Iterating the relation (5) for N-1 times gives

∂
∂y
φ
1
α,β˜( y,θ) =f 1(y,θ)+

⌠
⌡

y

0
f 1(z,θ) ∑

N-1

n=1
K
n
(y,z,θ)dz+⌠⌡

y

0
K
N
(y,z,θ)d zφ

1
α,β˜( z,θ).

Letting N→∞ and using the dominated convergence theorem, we conclude 

that the derivative ∂ φ1̃ α,β(y,θ)/∂y is given by

 ∂
∂y
φ
1
α,β˜( y,θ)=f1(y,θ)+

⌠
⌡

y

0
f 1(z,θ)K

*
(y,z,θ)dz.

Substituting f1(y,θ) of (6) into the above equation and then integrating it 

with respect to y from 0 to z yield

φ
1̃
α,β (z,θ) = φ

1̃
α,β (0,θ)[1+

⌠
⌡

z

0
K
*
(y,0,θ)dy]

-⌠⌡

z

0
K(w,0,0)[1+⌠⌡

z

w
K
*
(y,w,θ)dy]dw,  0≤z<β-α, θ≥0.

    (7)  

From the boundary condition that  it follows that
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φ
1̃
α,β (0,θ)=

⌠
⌡

β-α

0
K(w,0,0)[1+⌠

⌡

β-α

w
K
*
(y,w,θ)dy]dw

1+
⌠
⌡

β-α

0
K
*
(y,0,θ)dy

which completes the function φ1̃α,β(z,θ) of (7).

 By the similar method we can show that the Laplace transform 

φ2̃α,β(z,θ):=φ
2
α,β(β-z,θ) is given by

φ
2̃
α,β (z,θ)=

1+
⌠
⌡

z

0
K
*
(y,0,θ)dy

1+
⌠
⌡

β-α

0
K
*
(y,0,θ)dy

,  0≤z<β-α,  θ≥0. 

Remark We note that φ1α,β(x,0) is the probability that the content process of 

the dam operating with the release rate function r(⋅), which starts from x, 

up-crosses level β without reaching level α and is given by

φ
1
α,β (x,0)=

⌠
⌡

x

α
K
*
(β-y,0,0)dy 1+⌠⌡

β

α
K
*
(β-y,0,0)dy,

which coincides the first exit probability U(x) for the case that a=α and 

b=β in Harrison and Resnick(1976). Moreover the probability φ2α,β(x,0) is that 

the dam process reaches α before hitting β when it starts from x, that is, 

φ2α,β (x,0)=1-φ
1
α,β(x,0).
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