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Abstract

We analyze an   queueing system under 
  service policy. By 

using the level crossing theory and solving the corresponding integral 
equations, we obtain the stationary distribution of the workload in the 
system explicitly.
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1 .  Introduction

The 
  policy was introduced by Yeh(1985) as a generalized releasing policy 

of the 
  policy of Faddy(1974) for a dam with input formed by a Wiener 

process. Abdel-Hameed(2000) considered the optimal control of a dam using 
  

policy when the input process is a compound Poisson process with positive drift. 

Bae et al.(2003) determined the long-run average cost per unit time under the 


  policy in a finite dam with a compound Poisson input. Under the 

  policy, 

the stationary distribution of the workload in the   queueing system was 

derived in Bae et al.(2002).

In this paper, we introduce the 
  policy for an   queueing system; a 

server is initially idle and starts to serve, if a customer arrives, with service 

speed  . The customers arrive according to a Poisson process of rate    and 

each customer brings a job consisting of an amount of work to be processed that 

is independently and identically distributed with a distribution function   and a 

mean  . If the workload exceeds threshold  , the server changes his 

service speed to    instantaneously and continues to follow that service 

speed until the workload level reaches     . When the workload reaches 

level  , the service speed is changed again to   instantaneously. The service 

speed   is kept until the level up-crosses   again. For the stability of the 
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system, we assume that      .

In this paper, using a similar method as in Bae et al.(2002), we derive the 

distribution of the workload at the exit time from  . Together with the level 

crossing theory, it enables us to determine the explicit stationary distribution of 

the workload.

2 .  T he ex cess amount over   at the ex it time f rom 

Let   denote the workload of the system at time   under the 
  service 

policy. If we define 
           and 

         , and 

for ≥  , 
           and 

         , then 

  ≥  is a delayed regenerative process having 



…  as 

regeneration points.

Since   ≥  is non-Markovian, we decompose it into two Markov 

processes. Let   ≥  be a process obtained from   ≥  by 

deleting the time periods from 
  to 

 , for all ≥  , and by gluing together 

the remaining periods. Note that in the process    ≥  the system operates 

with service speed  . Let   ≥  be formed similarly by separating and 

connecting the periods which start at 
  and end at 

 , for all ≥  . Then, 

clearly the process   ≥  has the service speed  .

Now, we observe the excess amount over   at the first passage time through   

of the process   ≥ . Note that it is the same as the excess amount over 

  at the end of the cycle of the process   ≥ . Let us denote the exit 

time of the process    ≥ , starting at  , from   by  , namely,

    ≥   ∉    ,  ≤ ≤  ,

and define the distribution of the workload at the exit time   by

       ,  ≥  ,  ≤ ≤  .

Let

  
 

∞

 ,  ≤    ,

with

     
and 

   




    




    , ≥  .

Then, we obtain the following lemma:

Lemma 1  For  ≥ ,
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 











   




 
    ≤ 

where 

  




   ,

      ,
and

 













  









    

.

R emark  1    is the probability that the process   ≥ , starting from 

  ≤  , up-crosses level   without reaching level   given by

 









 





.

In the next lemma, we express the distribution of the excess amount over   at 

the first passage time through   in terms of   obtained in Lemma 1.

Lemma 2  The excess amount over   for the process    ≥ , starting with 
 ≤ ≤ , denoted by  , has the distribution function given by

   ≤    








  








(1)

3 .  T he stationary distribution

We denote by  ,  , and   the cycles of the processes   ≥ , 

   ≥ , and    ≥ , respectively. Then, obviously     .

Because   ≥  and   ≥  for    , are regenerative processes 

with finite mean cycles, each process has its stationary distribution function. Let 

  be the stationary distribution function of   ≥  for    , and let   

be that of   ≥ . Then it follows that

      , (2)

where      . Note that   is continuous and supported on ∞, 

whereas   is supported on  , has a jump at zero, and is continuous 
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otherwise. We denote the jump size of   at zero by α and write

    
,

where 
  is the absolutely continuous part of  . Using (2), the distribution   

can be written as

    
   .

For    , let   and   be the numbers of down- and up-crossings of 

level   by the process   ≥  during the cycle , respectively, and   the 

number of arrivals during . By convention the arrival that causes   ≥  

to up-cross level   for the first time during the cycle   is counted only in  .

By using the level crossing theory in Cohen(1977), we have that for the number 

of down-crossings, for    ,

    

.

We also have that, for    , 

     ≤     ≤  ,

where   is the generic random variable with distributions , for    , and   

denotes the amount of work that each arriving customer carries to the system.

Because the process   ≥  is the regenerative process having the same 

level   at all regeneration points, the number of up-crossings of level   equals 

the number of down-crossings of that level during the cycle. Therefore, it follows 

that

       
    ≤   

and

        
    ≥ 

    (3)

where   in (3) means the number of arrivals during the cycle   that cause 

the process   ≥  to up-cross both level   and level ≥   

simultaneously.

Let 
  and   are densities corresponding to 

  and  , respectively. Then we 

have the following theorem:

T heorem 1  The stationary densities 
  and   are given, respectively, by


 











     


  





  ≤   

  

and
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  









 

 




     

 
   












    ≥ 

  

where

   






and

  
 

∞



 
,    ≤   ,

and finally   and   are determined by two normalizing conditions

  





  

and 




∞

    .
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