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Abstract

In this paper, we develop the noninformative priors for the exponential models 
when the parameter of interest is the difference of two means. We develop the 
first and second order matching priors. We reveal that the second order 
matching priors do not exist. It turns out that Jeffreys' prior does not satisfy a 
first order matching criterion. The Bayesian credible intervals based on the first 
order matching meet the frequentist target coverage probabilities much better 
than the frequentist intervals of Jeffreys' prior. 

Keyw ord s : Matching Prior; Difference of Two Means; Exponential 
Distributions.

 1 .  I ntrod u ction

The exponential distribution plays an important role in the field of reliability. The 

reasons for using the exponential distribution assumption in reliability applications can 

be found in the early work of Davis (1952), Epstein and Sobel (1953), and others. 

Further justification, in the form of theoretical arguments to support the use of the 

exponential distribution as the failure law of complex equipment, is presented in the 

book by Barlow and Proschan (1975) and Lawless (2003).

  The present paper focuses on noninformative priors for the difference of two 

exponential means. We consider Bayesian priors such that the resulting credible intervals 

for the difference of two exponential means have coverage probabilities equivalent to 

their frequentist counterparts. Although this matching can be justified only 

asymptotically, our simulation results indicate that this is indeed achieved for small or 

moderate sample sizes as well.

  This matching idea goes back to Welch and Peers (1963). Interest in such  priors 

revived with the work of Stein (1985) and Tibshirani (1989). Among others, we may 

cite the work of Mukerjee and Dey (1993), DiCiccio and Stern (1994), Datta and Ghosh 

(1995a,b, 1996), Mukerjee and Ghosh (1997).

  On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo (1989,1992) 

extended Bernardo's (1979) reference prior approach, giving a general algorithm to 

derive a reference prior by splitting the parameters into several groups according to 

their order of inferential importance. This approach is very successful in various 

practical problems. Quite often reference priors satisfy the matching criterion described 

earlier.

  The problem of comparison for two exponential means has been investigated by many 

authors. For the comparison of two exponential distributions, most of the studies are the 

ratio of means. However there is a little work in the interval estimation for the 
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difference between two exponential means. Akahira (2002) proposed a systematic method 

of the construction of a confidence interval for the difference between two means in the 

exponential distributions. This construction of a confidence interval is as follows:

 Suppose that ⋯  are independent and identically distributed random variables 

according to the exponential distribution with mean   and ⋯  are independent 

and identically distributed random variables according to the exponential distribution 

with mean . A condition is given by 
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where  ⋅  is the indicator of a set  ,  ⋅  is the cumulative distribution 

function,   is a random variable with beta distribution      and   is a random 

variable with gamma distribution    . Using ⋅  satisfying the above 

condition uniformly in , we have
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 . So            is the confidence 

interval for       at level    , where          . But the 

proposed method only apply for the case of equal sample sizes. For a given significance 

level and sample size, some function satisfying the above condition will always be 

computed with respect to the level and sample size, and even the function may not be 

unique. Also, there is a little work in this problem from the viewpoint of Bayesian 

framework. 

  The outline of the remaining sections is as follows. In Section 2, we develop first 

order and second order probability matching priors for the difference of two exponential 

means. We revealed that the second order matching prior does not exist.  It turns out 

that the Jeffreys' prior does not satisfy a first order matching criterion.  We provide 

that the propriety of the posterior distribution for the first order matching priors in 

Section 3. In Section 4, simulated frequentist coverage probabilities under the proposed 

priors are given. The Bayesian credible intervals based on the first order matching prior 

meet the frequentist target coverage probabilities much better than the frequentist 

intervals of the Jeffreys' prior. 

 2 .  T he N oninformativ e P riors

  For a prior , let     denote the    th percentile of the posterior 
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distribution of , that is,

 ≤  │     

where   ⋯  


 and   is the parameter of interest. We want to find priors   

for which

                      ≤  │                              (1)

for some   , as   goes to infinity. Priors   satisfying (1) are called matching priors. 

If   , then   is referred to as a first order matching prior, while if   ,   is 

referred to as a second order matching prior.

  Consider that ⋯  are independent and identically distributed random variables 

according to the exponential distribution with mean   and ⋯  are independent 

and identically distributed random variables according to the exponential distribution 

with mean . Then the likelihood function is
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where the     and the   

  In order to find matching priors , let

      and  







With this parametrization, the likelihood function of parameters     for the likelihood 

(2) is given by
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Based on (3), the Fisher information matrix is given by
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and

 
    

             


    
         

         


.

From the above Fisher information matrix  ,   is orthogonal to   in the sense of Cox 

and Reid (1987). Following Tibshirani (1989), the class of first order probability 

matching prior is characterized by
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where       is an arbitrary function differentiable in its argument.

  The class of prior given in (4) can be narrowed down to the second order probability 

matching priors as given in Mukerjee and Ghosh (1997).

  A second order probability matching prior is of the form (4), and also   must satisfy 

an additional differential equation (cf (2.10)) of Mukerjee and Ghosh (1997), namely
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Then (5) simplifies to
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where
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However there can be no solution to (6) unless the   is the function of   and . Thus 

the second order matching prior does not exist.

  From the Fish information matrix  , the Jeffreys' prior is given by 
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  R emark  1 . In the original parameterization   , the first order matching prior is 

given by

    ∝

 


















    

And the Jeffreys' prior is given by

                                   ∝

 


                                (8)

  Notice that the matching priors (4) include many different matching priors because of 

the arbitrary selection of the function . However every function is not permissible in 

the construction of priors. For instance, we consider any function of the form  . If   

is negative integer, then the posterior distribution under function of the form   is 

proper. But the condition of propriety in this form strongly depend on the  . Moreover 

the posterior under this form is complex. Also there does not seem to be any 

improvement in the coverage probabilities with this posterior distribution. So we have 

chosen   to be a constant function. The resulting prior is given by
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Thus  in the original parameterization   , the first order matching prior is given 

by

                           ∝
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 3 .  I mplementation of the Bayesian P roced u re

  We investigate the propriety of posteriors for a general priors which include  Jeffreys' 

prior (8) and the first order matching prior (10). We consider the class of priors

                           ∝
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where        and ≥. The following theorem can be proved.

  T heorem 1 . The posterior distribution of     under the prior (11) is proper if 

        and       . 

  P roof.  Under the prior (11), the joint posterior for   and   given   and   is
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  │   

    ≤







 



















   








 
  

 

 
  

 



≤


∞




∞ 



















   







 
  

 

 
  

 



     ∞,

if           and         . This completes the proof.
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  T heorem 2 .  The marginal posterior density of   under the matching prior (9) is 

given by

 │   

∝
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And the marginal posterior density of   under the Jeffreys' prior (7) is given by

 │   

∝


∞

       
       

 

×     
     

      


× 






 
 

 
      

  
 

 
      

 

  Actually the normalizing constant for the marginal density of   requires a two 

dimensional integration. Therefore we have the marginal posterior density of , and so 

it is to compute the marginal moment of . In Section 4, we investigate the frequentist 

coverage probabilities for the Jeffreys' prior   and first order matching prior  , 

respectively. 

 4 .  N u merical Stu d ies and  Discu ssion

  We evaluate the frequentist coverage probability by investigating the credible interval 

of the marginal posteriors density of   under the noninformative prior   given in 

Section 3 for several configurations     and   . That is to say, the frequentist 

coverage of a      posterior quantile should be close to    . This is done 

numerically. Table 1 gives numerical values of the frequentist coverage probabilities of 

0.05 (0.95) posterior quantiles for the our priors. The computation of these numerical 

values is based on the following algorithm for any fixed true     and any 

prespecified probability value  . Here   is 0.05 (0.95). Let  │   be the 

posterior -quantile of   given   and  . That is to say, 

  │ │    , where  ⋅│   is the marginal posterior 

distribution of . Then the frequentist coverage probability of this one sided credible 

interval of   is
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         ≤ │ 
The estimated      when    0.05 (0.95) is shown in Table 1. 

  In particular, for fixed   , we take 5,000 independent random samples of   and 

  from the model (2). For the cases presented in Table 1, we see that the first order 

matching prior meets very well the target coverage probabilities for small and moderate 

values of   and . Note that the Jeffreys' prior does not satisfy the first order 

matching criterion but it meets the target coverage probabilities well.

  Example. The following data, given by Proschan (1963), are time intervals of 

successive failures of the air conditioning equipment in Boeing 720 aircraft. For aircraft 

1, the Bayes estimate of   under Jeffrey's prior is 69.95. And the Kolmogorov-Smirnov 

test statistic is 0.1143 and its p-value is 0.88. For aircraft 2, the Bayes estimate of   

under Jeffreys' prior is 94.36. Also the Kolmogorov-Smirnov test statistic is 0.1791 and 

its p-value is 0.62. So we can assume that the time between successive failures for 

each plane is exponentially distributed. 

   Aircraft 1   50  44  102  72  22  39  3  15  197  188  79  88  46  5  5  36  

               22  139  210  97  30  23  13  14   

Aircraft 2   102  209  14  57  54  32  67  59  134  152  27  14  230  66  61  34

Under the Jeffreys' prior and the matching prior, the Bayes estimates and the 95% 

Bayesian credible intervals of the   are -21.15 (-82.08, 27.38) and -21.54 (-81.84, 26.34), 

respectively. Bayes estimates under two priors have similar values and the length of the 

confidence interval under the matching prior is shorter than the Jeffreys' prior. 

5 .  C onclu sion

  In the two exponential distributions, we have found a  prior which is a first order 

matching prior  for the difference of means. It turns out that the second order matching 

prior does not exist. And this first order matching prior possesses good frequentist 

properties in that the coverage probabilities of credible intervals for the difference of 

means based on this prior match their frequentist counterpart very closely even for 

small and moderate sample sizes. Also the Jeffreys' prior does not satisfy the first order 

matching criterion.  From our simulation results and example, we recommend to use 

the first order matching prior for the Bayesian inference of the difference of two 

exponential means.



143

Table 1: Frequentist Coverage Probabilities of 0.05 (0.95) Posterior Quantiles for   

                               
 1   0.1   5   5
           5   10
           10  10
           10  20
     0.5   5   5
           5   10
           10  10
           10  20
      3    5   5
           5   10
           10  10
           10  20
      5    5   5
           5   10
           10  10
           10  20
     10    5   5
           5   10
           10  10
           10  20
 10  0.1   5   5
           5   10
          10   10
          10   20
      1   5    5
          5    10
          10   10
          10   20
      5   5    5
          5    10
          10   10
          10   20
     30   5    5
          5    10
          10   10
          10   20
    100  5     5
          5    10
          10   10
          10   20

 0.053 (0.957)   0.053 (0.951)
 0.054 (0.961)   0.051 (0.951)
 0.055 (0.955)   0.053 (0.951)
 0.049 (0.956)   0.046 (0.952)
 0.056 (0.963)   0.065 (0.941)
 0.055 (0.960)   0.061 (0.937)
 0.055 (0.953)   0.058 (0.939)
 0.057 (0.953)   0.059 (0.942)
 0.034 (0.942)   0.047 (0.935)
 0.040 (0.951)   0.047 (0.949)
 0.046 (0.949)   0.055 (0.949)
 0.045 (0.049)   0.049 (0.950)
 0.040 (0.941)   0.052 (0.941)
 0.045 (0.950)   0.051 (0.950)
 0.042 (0.948)   0.048 (0.950)
 0.045 (0.946)   0.048 (0.947)
 0.045 (0.945)   0.049 (0.948)
 0.047 (0.950)   0.048 (0.951)
 0.049 (0.950)   0.054 (0.952)
 0.050 (0.948)   0.052 (0.949)
 0.050 (0.952)   0.050 (0.952)
 0.052 (0.948)   0.052 (0.948)
 0.050 (0.958)   0.050 (0.958)
 0.045 (0.954)   0.045 (0.953)
 0.056 (0.956)   0.054 (0.950)
 0.056 (0.955)   0.053 (0.948)
 0.053 (0.953)   0.052 (0.949)
 0.055 (0.954)   0.051 (0.950)
 0.054 (0.957)   0.065 (0.939)
 0.055 (0.961)   0.061 (0.938)
 0.054 (0.961)   0.057 (0.950)
 0.055 (0.957)   0.056 (0.943)
 0.038 (0.944)   0.053 (0.938)
 0.043 (0.948)   0.051 (0.945)
 0.039 (0.948)   0.046 (0.948)
 0.042 (0.950)   0.046 (0.950)
 0.039 (0.945)   0.045 (0.947)
 0.048 (0.947)   0.052 (0.947)
 0.046 (0.951)   0.049 (0.953)
 0.048 (0.945)   0.049 (0.946)
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