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1. Introduction

Bayesian methods have become more attractive because of their practical 

approach in the theory and practice of statistics different from classical methods. 

Bayesian analysis is also more powerful since the analysis is based on a given 

data and prior information is used by experimenter, where it makes the efficiency 

of the result strengthen. In real data analysis, most social problems or experiments 

are para- meterized with several parameters rather than one parameter. This 

method is useful in many fields which one problem is related or dependent with 

others. However, multiple parametric models have had much difficulties in finding 

their estimators and inferring from them. Many statisticians made efforts to 

surmount these difficulties. Empirical and hierarchical Bayes methods are useful in 

statistics, especially in the context of simultaneous estimation of several 

parameters.

For example, agencies of the Federal Government have been involved in 

obtaining estimates of per capita income, unemployment rates, crop yields and so 

forth simultaneously for several state and local government areas. In such 

situations, quite often estimates of certain area means, or simultaneous estimates 

of several area means can be improved by incorporating information from similar 

neighboring areas. Examples of this type are especially suitable for empirical 

Bayes (EB) analysis. As described in Berger (1985), an EB scenario is one in 

which is known as relationships among the coordinates of a parameter vector, say 

θ= (θ1 ,⋯,θn )
T  allow use of the data to estimate some features of the prior 

distribution. For example, one may have reason to believe that the θ
i

's are iid 

from a prior π
0 (λ), where π

0
 is structurally known except possibly for some 

unknown parameter λ. A parametric empirical Bayes (EB) procedure is one where 

λ is estimated from the marginal distribution of only the observations.

Closely related to the EB procedure is the hierarchical Bayes (HB) procedure 

which models the prior distribution in several stages. In the first stage, conditional 

on Λ= λ, θ
i

's are iid with a prior π
0 (λ). In the second stage, a prior 

distribution (often improper) is assigned to Λ . This is an example of a two stage 
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prior. The idea can be generalized to multistage priors, but that will not be 

pursued in this article.

It is apparent that both the EB and the HB procedures recognize the uncertainty 

in the prior information, but whereas the HB procedure models the uncertainty in 

the prior information by assigning a distribution (often noninformative or improper) 

to the prior parameters (usually called hyperparameters), the EB procedure 

attempts to estimate the unknown hyperparameters, typically by some classical 

methods like the method of moments(MME), method of maximum likelihood(MLE), 

etc., and use the resulting estimated priors for inferential purposes. It turns out 

that the two methods can quite often lead to comparable results, especially in the 

context of point estimation. However, when it comes to the question of measuring 

the standard errors associated with these two estimators, the HB method has a 

clear edge over a naive EB method. Whereas there are no clear cut measures of 

standard errors associated with EB point estimators, the same is not true with HB 

estimators. To be precise, if one estimates the parameter of interest by its 

posterior mean, then a very natural estimate of the risk associated with this 

estimator is its posterior variance. Estimates of the standard errors associated with 

EB point estimators usually need an ingenious approximations (see, e.g., Morris, 

1981, 1983). However, the posterior variances, though often complicated, can be 

found exactly.

Deely and Lindley (1981) compared and contrasted the EB and the HB 

procedures much in the spirit of the discussion in the preceding paragraphs. 

However, unlike the present article, they did not emphasize simultaneous 

estimation problems, nor did they incorporate discussion of multivariate normal 

models.

The outline of the remaining sections is as follows. In Section 2 of this paper, 

we summarize the methods for finding the empirical and hierarchical Bayes 

estimators. Furthermore, we obtain the variance of HB estimator. As noted earlier, 

for the EB estimator, we have only the point estimator itself since it is not easy 

to find its standard error. In Section 3, we set up the model structure using the 

several different distribution of the errors for observing their effects of model 

perturbation for the error terms in obtaining the EB and HB estimators. In Section 

4, we provide a numerical example. Based on a simulation study, we observe the 

performance of EB and HB estimators under model perturbation.

2. Bayesian Estimation of the Normal Means

We make a comparison of the EB and HB procedures for estimating the 

multivariate normal mean. We consider the following model.

Ⅰ. Conditional on θ
1, ⋯, θm, let X 1, ⋯, Xm  be independent with 



204

Xi ∼ N (θ i , σ
2 ), i= 1, ⋯, m, σ 2

( > 0 )  being known.

Ⅱ. The θ
i

's have independent N (μ , A ), i= 1, ⋯, m, priors.

Let write θ= (θ1 , ⋯, θm )
T, X = (X 1 , ⋯, Xm )

T  and x=(x1,⋯,. xm )
T.

The posterior distribution of θ given X = x  is then 

N ( (1-B) x+Bμ,(1-B) I m ), where B= σ 2
/ (σ 2

+A). Accordingly, the Bayes 

estimator of θ is given by

θ̂ B= E ( θ | X = x ) = (1-B) x+Bμ                  (2.1)

In an EB or a HB scenario, some or all of the prior parameters are unknown. 

In an EB setup, these parameters are estimated from the marginal distribution of 

X  which in this case is N ( μ, B-1 I m ). A HB procedure, on the other hand, 

models the uncertainty of the unknown prior parameters by assigning distributions 

to them. Such distributions are often called hyperpriors. We shall consider the 

following case.

We assume both μ  (real) and A  to be unknown. Recall that marginally 

X  ∼ N (μ 1 m, B
-1 I m ), where B= σ 2/ (σ 2 +A). Hence, 

(X, ∑
m

i=1
(Xi - X ) 2)  is complete sufficient, so that the UMVUE's of μ  and B  

are given respectively by X  and σ 2 (m-3) / ∑
m

i=1
(Xi - X ) 2. Substituting these 

estimators of μ  and B  in (2.1), the EB estimator of θ is given by

θ̂ EB= X -
σ 2

(m-3)

∑
m

i=1
(Xi - X ) 2

(X - X 1 m )                      (2.2)

This modification of the James-Stein estimator was proposed by Lindley(1962). 

Whereas, the original James-Stein estimator shrinks X  towards a specified point, 

the modified estimator given (2.2) shrinks X  towards a hyperplane spanned by 

1 m. Additionally, the estimator θ̂ EB  is known to dominate X  for m≥ 4.

We now proceed to find the HB estimator of θ. Consider the model where (i) 

conditional on θ, μ  and A, X  ∼ N ( θ, σ
2 I m ); (ii) conditional on μ  and A, 
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θ
i ∼ N (μ , A ), i= 1, ⋯, m; (iii) marginally μ  and A  are independently 

distributed with μ  uniform on (-∞ , ∞), and A  has uniform improper pdf on 

(0 , ∞). Customarily, such a prior on μ  is widely accepted as a reasonable 

objective prior. Then the joint (improper) pdf of X , θ, μ  and A  is given by

f ( x , θ , μ, A ) ∝ exp [- 1

2σ 2 ||x- θ ||
2]

×A
-

1
2
m

exp [- 1
2A

||θ- μ1 m ||
2]

           (2.3)

Now integrating with respect to μ , it follows from (2.3) that the joint (improper) 

pdf of X , θ, and A  is

f ( x,θ,A ) ∝ A
-
m-1

2

× exp [- 1

2σ 2 (θ-
1
σ 2 E

-1x )
T

(θ- 1
σ 2 E

-1x )
       +

1
σ 2 x

T
x-

1
σ 4 x

TE -1x]

where E -1 = σ 2(1-B) I m+σ
2Bm-1J m. Hence, conditional on x  and A,

θ  ∝ N [ (1-B) x+ B x1 m, σ 2 { ( 1-B) I m+ B
m
J m }]          (2.4)

Also, integrating with respect to θ in (2.4), one gets the joint pdf of x  and A  

given by

f ( x , A )  ∝ (σ 2 + A)
-
m-1

2 exp [- 1

2(σ 2 + A)
∑
m

i=1
(xi - x ) 2 ]      (2.5)

Since B=
σ 2

σ 2
+A

, it follows from (2.5) that the joint pdf of X  and B  is 

given by

f ( x , B )  ∝ B
m- 5

2
exp [- B

2σ 2 ∑
m

i=1
(xi - x )

2 ]          (2.6)
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where this HB approach was first proposed by Strawderman (1971).

It follows from (2.6) that

E (B |x ) = ⌠
⌡

1

0
B
m-3

2 exp[- B

2σ 2 ∑
m

i=1
(xi - x )

2 ]dB

÷ ⌠⌡

1

0
B

m-5
2 exp [- B

2σ 2 ∑
m

i=1
(xi - x )

2 ]dB            (2.7)

E (B 2 |x ) = ⌠
⌡

1

0
B
m-1

2 exp[- B

2σ 2 ∑
m

i=1
(xi - x )

2 ]dB

÷ ⌠⌡

1

0
B

m-5
2

exp [- B

2σ 2 ∑
m

i=1
(xi - x )

2 ]dB            (2.8)

One can obtain V (B |x )  from (2.7) and (2.8), and use to obtain the HB 

estimator E (θ |x )  and its variance V (θ |x )

θ̂ HB= E (θ |x ) = x-E (B |x ) ( x- x 1 m )                        (2.9)

          V (θ |x ) = V (B |x )(x- x 1 m )(x- x 1 m )
T  

               + σ 2I m- σ
2E (B |x )( I m- 1

n
J m )                     (2.10)

3 . Model Perturbation

Our interest is to find the EB and HB procedures for estimating the multivariate 

normal mean. We consider the following hierarchical model:

Ⅰ. Yi | θ i ∼
iid  N (θ i , σ

2
), i= 1,⋯,m

Ⅱ. θ
i |A ∼

iid  N (0 ,A ), i= 1,⋯,m

In other words, our model can be rewritten as

Yi= θ i+ e i,  i = 1,⋯,m                       (3.1)

where e i ∼
iid  N (0 , σ 2 ).

Here, our interest is moved toward the issue that the normality of error terms 

is not satisfied and they are distributed from any other densities. The followings 
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are provided as four cases:

Ⅰ. Skewed distribution       e i= Xi- β,

    where Xi ∼ Exp (θ = 1/β )

Ⅱ. Uniform distribution       e i ∼ U (-c , c )

Ⅲ. Heavy tailed distribution   e i ∼ t ν  (low value of ν)

Ⅳ. Bimodal (Mixture of normals)

    e i ∼ {
N (μ 1 , σ

2
1 )    with probability π 1

N (μ 2 , σ
2
2 )    with probability π 2= 1-π 1

    with π
1
μ

1 + π 2
μ

2 = 0.

Additionally, without loss of generality, we may assume that

π
1 = π 2 =

1
2

, μ
1 = -μ 2

, and σ2
1 = σ

2
2

.               (3.2)

Note that it is necessary that density of e i's for each case have mean 0 and 

equal variance. Especially, the variance of the mixture distribution of normals can 

be obtained as follows.

A random variable x has a normal mixture distribution if the data originate 

from a fixed number k  of normal densities. A k-component normal mixture has 

pdf

f k(x) = ∑
k

j=1
π
j
φ (x ;μ j, σ j )                        (3.3)

where φ (x ;μ j, σ j )  is a normal pdf with mean μ
j

 and standard deviation σ
j

 and 

π
j

 are weights satisfying

∑
k

j=1
wj= 1,   wj≥ 0.

Given the mixture parameters {π j, μ j, σ j }, j= 1, ⋯, k, the mean μ
eq

 and 

variance σ2
eq

 of the distribution are

μ
eq= ∑

k

j= 1
π
j
μ
j

                                  (3.4)
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σ 2
eq= ∑

k

j= 1
π
j (σ

2
j + μ

2
j ) - μ

2
eq

                    (3.5)

From (3.2), (3.4) and (3.5), using k= 2, variance of normal mixture is easily 

calculated.

Plots of above four densities including the normal condition are shown in Figure 

1 when σ 2 = 3. Thus parameter of each density is θ= 1/ 3, c= 3, and ν= 3. 

Also, using (3.2), we have μ
1 = 2  and σ2

1 = σ
2
2 = 1  to satisfy the equal variance 

between 5 densities.

     F igure 1. Plots of densities for error terms

4 . Simulation Study

Under the model setup in Section 3, given data y= (y1 , ⋯, ym )
T, we shall 

calculate the simulated Bayes risk differences for two EB and HB estimators 
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under 4 model perturbation cases given by

1
mR ∑

m

i=1
∑
R

r=1
( θ̂

EB( p)
ir - θ̂ EB(n)

ir )
2

                     (4.1)

1
mR ∑

m

i=1
∑
R

r=1
( θ̂ HB( p)ir - θ̂ HB(n)

ir )
2

                     (4.2)

We shall now conduct a simualtion study and then calculate the empirical and 

hierarchical Bayes estimators. We proceed our simulation in the following way:

Step 1. Start the values A= 1  and m= 10.

Step 2. Iterate the following procedure 10,000 times.

A) Generate θ
i

, i= 1,⋯,m, from the normal density with mean 0 and 

variance A.

B) Choose one of the error model and generate e i's from its density. Adding 

yi= θ i+ e i, we have new samples y= (y1 , ⋯, ym )
T.

C) Use (2.2) and (2.9), respectively, to obtain the θ̂ EB( p)
ir

 and θ̂ HB(p)
ir

 estimators 

with given data y.

D) Calculate θ̂ EB(n)
ir

 and θ̂ HB(n)
ir

 with given normal data.

E) After 10,000 iterations, calculate (4.1) and (4.2).

Step 3. Modifying A (= 1,2,3)  and m (= 10,30,50,100), repeat the Step 1 and 2.

After 10,000 times iterations, these given quantities are provided in Table 1 and 

2 when σ 2 = 2  and  Table 3 and 3 when σ 2 = 3, respectively.

5 . Conclusion

In this paper, we observed the effects for estimating the Bayes estimators when 

assumption that the error terms are independently and normally distributed is no 

longer satisfied. As for nonnormal cases about error such as exponential 

distribution, uniform distribution, heavy-tailed distribution (i.e., Student t
-distribution with low degrees of freedom) and mixture distribution of normals, we 

computed the Bayes risk difference, which indicates difference between Bayes 

estimators whether normality of error is provided or not. Our simulations show 

that uniform case has the smallest quantity than any other cases. However, as m  

is large enough, (we use m= 100), all Bayes risk differences among 4 cases are 

nearly same. This is followed by the Central Limit Theorem. Therefore, if we fall 

in the situation that the basic assumption for the error is not satisfied, finding 

more information for analysis will be an alternative solution.
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A m
Simulated Bayes risk difference for EB

Exponential Uniform t Mixture

1

10 1.857682 1.562864 2.020998 1.609981

30 0.970262 0.823018 0.981484 0.845192

50 0.760994 0.673663 0.771765 0.680867

100 0.612954 0.559175 0.622611 0.565584

2

10 2.159192 1.952189 2.155329 1.990813

30 1.413695 1.326626 1.436548 1.337724

50 1.252127 1.196393 1.257925 1.202925

100 1.132534 1.101349 1.145327 1.106238

3

10 2.428180 2.307849 2.429307 2.323360

30 1.785523 1.725255 1.784403 1.736631

50 1.657591 1.616681 1.665927 1.619311

100 1.540722 1.520612 1.553463 1.517464

T able 1. Simulated Bayes risk difference for the Empirical Bayes(EB)

          estimator when σ 2
= 2.

A m
Simulated Bayes risk difference for HB

Exponential Uniform t Mixture

1

10 1.231158 1.212605 1.268657 1.222339

30 0.629980 0.631424 0.633770 0.632475

50 0.504239 0.503871 0.504661 0.505580

100 0.416289 0.415944 0.416219 0.416324

2

10 1.652823 1.613780 1.632313 1.617263

30 1.178952 1.179666 1.184807 1.181775

50 1.102116 1.104663 1.104613 1.103606

100 1.054553 1.054176 1.055971 1.055721

3

10 2.113442 2.082222 2.094915 2.078273

30 1.873554 1.875266 1.874860 1.877861

50 1.837898 1.837979 1.838611 1.839089

100 1.803275 1.802409 1.805150 1.802743

T able 2. Simulated Bayes risk difference for the Hierarchical Bayes(HB)

          estimator when σ 2 = 2.



211

A m
Simulated Bayes risk difference for EB

Exponential Uniform t Mixture

1

10 2.703815 2.095144 2.892363 2.121254

30 1.216920 0.949108 1.503161 0.964257

50 0.909195 0.721589 1.081143 0.732254

100 0.643260 0.544182 0.866316 0.547590

2

10 2.973919 2.568638 3.218669 2.591406

30 1.695215 1.504795 1.899276 1.511079

50 1.385524 1.274057 1.593561 1.283963

100 1.194081 1.117276 1.318456 1.116336

3

10 3.225439 2.979093 3.415805 3.008586

30 2.132386 1.989260 2.488465 1.994696

50 1.889301 1.794401 2.081812 1.800633

100 1.688603 1.647797 1.840588 1.650419

T able 3 . Simulated Bayes risk difference for the Empirical Bayes(EB)

          estimator when σ 2
= 3.

A m
Simulated Bayes risk difference for HB

Exponential Uniform t Mixture

1

10 1.680362 1.645251 1.690728 1.643587

30 0.723506 0.718995 0.726910 0.720451

50 0.533489 0.535871 0.542892 0.535366

100 0.379559 0.381354 0.381060 0.381009

2

10 2.066405 2.027080 2.157352 2.032453

30 1.195144 1.195040 1.204596 1.194297

50 1.013015 1.015317 1.018567 1.015581

100 0.898230 0.898681 0.897748 0.897851

3

10 2.454180 2.436912 2.487310 2.445730

30 1.762546 1.759589 1.770420 1.759352

50 1.655088 1.653654 1.656708 1.656593

100 1.571932 1.571272 1.572184 1.571244

T able 4 . Simulated Bayes risk difference for the Hierarchical Bayes(HB)

          estimator when σ 2
= 3.
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