| | | | | | 번호: | PO-EM-027 | |--------|--|--|-------|--|------------|-----------| | 제 | GSTM1, T1 유전자다형성과 대기분진이 초등학생의 최대호기량에 미목 GSTM1, T1 polymorphisms and particulate air pollutants on peak exposchool children | | | | | | | 저
소 | 자
및
속 | 홍윤철1), 이현정2), 이경호1), 이관회3), 김대선4), 류승도4) 1) 서울대학교 의과대학 예방의학교실 및 환경의학연구소, 2) 서울대학교 보건대학원
역학통계학교실, 3) 인하대병원 산업의학과, 4) 국립환경과학원 환경역학과
Yun-Chul Hong1), Hyun-Jung Lee2), Kyoung-Ho Lee1), Kwan-Hee Lee3),
Dae-Seon Kim4), Seung-Do Yu4) 1) Department of Preventive Medicine, Seoul National University College of Medicine,
Institute of Environmental Medicine, SNUMRC, 2) Department of Epidemiology and
Biostatistics, Seoul National University School of Public Health, 3) Department of
Occupational and Environmental Health, Inha University Hospital, 4) Environmental
Epidemiology Division, National Institute of Environmental Research | | | | | | 분 | o} | 환경의학
[환경역학] | 발 표 자 | | 발 표
형 식 | 포스터 | Background: Exposure to short-term particulate air pollutants has been reported to be associated with decrements in lung function. However, effect of genetic polymorphisms on the relationship has not been evaluated. Methods: We investigated 43 healthy school children from 23 March to 3 May 2004. Questionnaire survey was performed in the first day with lung function measurement. Each student was provided with peak expiratory flowmeter to measure PEFR three times a day. Particulate air concentrations (PM2.5, PM10) were monitored everyday. GSTM1/T1 genetic polymorphisms were determined by multiplex PCR using DNA extracted from buccal washing fluids. We used a mixed linear regression model to estimate the association between PEFR and particulate air pollutants adjusting for personal and meteorologic variables. Results: We found that morning PEFR was significantly decreased in subjects with GSTM1 null type compared to those with GSTM1 wild type (P<0.01). By contrast, GSTT1 wild type was associated with PEFR reduction (P=0.06). Morning PEFR was significantly decreased in association with PM2.5 concentrations with a 1 day lag (P<0.01), but not with PM10 concentrations (P=0.39). However, lead of PM10 was significantly associated with morning PEFR reduction (P<0.01). In the model considering both particulate pollutants and GST polymorphisms, PM2.5 and lead of PM10 were found to significantly reduce morning PEFR regardless of GST polymorphisms. Conclusions: We found that acute lung function reduction was associated with particulate air pollutant concentrations and GST polymorphisms.