(TP-05) ## Preparation of the cerium silicate thin films by solid phase reaction of CeO₂ and Si 김영재, 양택숭, 안기석, 정택모, 김창균, 김윤수, 이영국 한국화학연구원 박막재료연구팀 Cerium silicate (Ce₂Si₂O₇) is a promising material for optical applications such as EL and LED devices. Optical band gap of Ce₂Si₂O₇ is approximately 3.4–35 eV, which is comparable to that of ZnO or GaN. The reports on Ce₂Si₂O₇, however, is rare due to the difficulty in the synthetic process of the material. Ce₂Si₂O₇ is prepared by a solid phase reaction of the samples having CeO₂/Si(100) structure. CeO₂ films were deposited on p-type Si (100) substrates by metal-organic chemical vapor deposition (MOCVD) technique in the temperature range from 500° C to 900° C using Ce(tmhd)₄. And then the films were annealed at $1100-1200^{\circ}$ C in vacuum or in oxygen atmosphere, resulting in the evolution of Ce₂Si₂O₇ phase. Compositional, chemical, structural, and optical properties of the Ce₂Si₂O₇ thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) measurement. Strong UV emission near 375–385nm was observed from the Ce₂Si₂O₇ thin film annealed at 1100 °C.