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AbstractAbstractAbstractAbstract  

Scalability of clustering algorithms is critical 

issues facing the data mining community. This is 

particularly true for computationally intense tasks 

such as data clustering. Random sampling of 

instances is one possible means of achieving 

scalability but a pervasive problem with this 

approach is how to deal with the noise that this 

introduces in the evaluation of the learning 

algorithm. This paper develops a new optimization 

based clustering approach using an algorithms 

specifically designed for noisy performance. 

Numerical results illustrate that with this algorithm 

substantial benefits can be achieved in terms of 

computational time without sacrificing solution 

quality. 

 

1. Introduction Introduction Introduction Introduction  
 

In recent years databases in modern 

enterprises have become massive and contain a 

wealth of important data. However, when 

traditional methods of analysis fall short in 

transforming this data into knowledge, exploratory 

techniques such as knowledge discovery in 

databases must be applied. This multidisciplinary 

field of data mining draws heavily on statistics and 

artificial intelligence, but numerous problems in 

data mining and knowledge discovery can also be 

formulated as optimization problems, and 

optimization techniques can therefore be used to 

solve large-scale data mining problems (Basu, 

1998; Bradley et al., 1999).  

As the importance of data mining has grown, 

one of the critical issues to emerge is how to scale 

data mining techniques to larger and larger 

databases (Bradley et al., 2002). This is 

particularly true for computationally intensive data 

mining tasks such as identifying natural clusters of 

instances (Kaufman and Rousseeuw, 1990). 

Several approaches to scalability enhancements 

have been studied at length in the literature 

(Provost and Kolluri, 1999), including using 

parallel mining algorithms (Forman and Zhang, 

2000) and preprocessing the data by filtering out 

redundant or irrelevant features and thus reducing 

the dimensionality of the database (Ólafsson, 

2003). Another approach to better scalability is 

using a selection of instance from a database 

rather than the entire database (Liu and Motoda, 

2001). This paper deals with such instance 

selection and how it can be applied to data 

clustering within an optimization-based framework. 

Perhaps the simplest approach to instance 

selection is random sampling (Kiven and Mannila, 

1994). Numerous authors have studied this 

approach for specific data mining tasks such as 

clustering (Kaufman and Rousseeuw, 1990; Ng and 

Han, 1994, Ester, Kriegel, and Xu, 1995), 

association rule discovery (Toivonen, 1996), and 

decision tree induction (Chauchat and 

Rakotomalala, 2001). When implementing this 

approach, the most challenging issue is 

determining a sample size that improves 

performance of the algorithm without sacrificing 

solution quality. Bounds can be developed that 

allow for a prediction of sample effort needed, but 
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such bounds usually require knowing certain 

problem parameters and typically overestimate the 

necessary sample size (Toivonen, 1996). On the 

other hand, too small a sample will lead to a bias 

and degeneration in performance. One possible 

solution is to use adaptive sampling (Domingo, 

Gavalde, and Watanabe, 2000; Provost, Jensen, 

and Oates, 1999).  

In this paper we advocate an alternative 

approach that is based on a novel formulation of 

the clustering task as an optimization problem. We 

also take advantage of the fact that certain 

optimization techniques have been explicitly 

designed to account for noisy performance 

estimates, such as are common when performance 

is estimated using simulation. In particular, one 

such method is the nested partitions method that 

can be used to solve general global optimization 

problems (Shi and Olafsson, 2000) and specifically 

combinatorial type optimization problems with 

noisy performance (Olafsson, 1999). A defining 

characteristic of this method is that wrong moves 

made due to noise in performance estimates can 

be automatically corrected in a later move. In the 

scalable clustering context this means that nosier 

performance estimates, resulting from smaller 

samples of instances, may result in more steps 

taken by the algorithm but any bias will be 

automatically corrected. This eliminates the need 

to determine the exact sample size, although the 

computational performance of the algorithm may 

still depend to some extent on how it is selected.  

The reminder of this paper is organized as 

follows. In Section 2 we briefly review clustering 

techniques and in particular, focus on efforts in 

scalable clustering. In Section 3 we present the 

optimization-based clustering algorithm and 

demonstrate its effectiveness on a sample 

problems. In Section 4 we present some numerical 

results on the scalability of the algorithm with 

respect to the instance dimension, and Section 5 

contains concluding remarks and suggestions for 

future research directions. 

 

2. Scalable ClusteringScalable ClusteringScalable ClusteringScalable Clustering        

    

Clustering has been an active area of 

research for several decades, and many clustering 

algorithms have been proposed in the literature 

(Kaufman and Rousseeuw, 1990; Grabmeier and 

Rudolph, 2002). In particular, considerable 

research has been devoted specifically to scalable 

clustering. We will start by briefly describing the 

various types of clustering algorithms and then 

mention some specific scalable methods.  

Clustering algorithms can be roughly divided 

into two categories: hierarchical clustering and 

partitional clustering (Jain, Murty, and Flynn, 

1999). In hierarchical clustering all of the 

instances are organized into a hierarchy that 

describes the degree of similarity between those 

instances (e.g., a dendrogram). Such 

representation may provide a great deal of 

information, but the scalability of this approach is 

questionable as the number of instances grows. 

Partitional clustering, on the other hand, simply 

creates one partition of the data where each 

instance falls into one cluster. Thus, less 

information is obtained but the ability to deal with 

a large number of instances is improved. Examples 

of the partitioning approach are the classic k-

means and k-medoids clustering algorithms.  

There are many other characteristics of 

clustering algorithms that must be considered to 

ensure scalability of the approach. For example, 

most clustering algorithms are polythetic, meaning 

that all features are consider simultaneously in 

tasks such as to determine the similarity of two 

instances. However, as the number of features 

becomes large this may pose scalability problems 

and it may be necessary to restrict attention to 

monothetic clustering algorithms that consider 

features one at a time. Most clustering algorithm 

are also non-incremental in the sense that all of 

the instances are considered simultaneously. 

However, there are a few algorithms that are 

incremental, which implies that they consider each 

instance separately. Such algorithms are 

particularly useful when the number of instances is 

large and keeping the entire set of instances in 

memory poses scalability problems. 

Scalable clustering has received 

considerable attention in recent years, and here 

we will mention only a few of the methods that 

have been developed. For example, Zhang, 

Ramakrishnan, and Livny (1996) proposed BIRCH, 

a hierarchical algorithm for clustering. The key 

idea of this method is to summarize cluster 

representations using two innovative concepts, 

clustering feature and clustering feature tree. 

Another approach to hierarchical clustering 

is the CURE algorithm developed by Guha, Rastogi, 

and Shim (1998). The steps of the CURE algorithm 

are to obtain a sample from the original database, 
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partition the sample into a set of partitions and 

then cluster each partition, eliminate outliers and 

cluster the partial clusters. Finally, each data 

instance is labeled with the corresponding cluster. 

Improved scalable versions of partitioning 

methods such as k-means and k-medoids have 

also been developed. The Clustering LARge 

Applications (CLARA) algorithm improves the 

scalability of the PAM k-medoids algorithm by 

applying PAM to multiple samples of the actual 

data and returns the best clustering (Kaufman and 

Rousseeuw, 1990). The CLARANS algorithm 

improves on this approach by obtaining random 

samples at each step, thus making the sampling 

dynamic (Ng and Han, 1994). 

A single pass k-means clustering algorithm 

was proposed by Bradley, Fayyad, and Reina 

(1998), with the main idea being to use a buffer to 

save points from the database in a compressed 

form. This approach was simplified in the 

algorithm proposed by Farnstrom, Lewis, and 

Elkan (2000), in an effort to reduce the overhead 

that otherwise might cancel out any scalability 

improvements that might be achieved. 

Yet another way of improving scalability is 

via distributed clustering, where instead of 

combining all data before clustering, data sets are 

operated on independently with minimum 

communication between the parallel clustering 

algorithms (Forman and Zhang, 2000). 

The work presented in this paper is a 

partitional clustering algorithm that attempts to 

find cluster centers and uses random sampling to 

improve scalability. In that sense, it is the most 

similar to the CLARA and CLARANS algorithms, 

but its optimization-based approach sets it apart.  

 

3. OptimizationOptimizationOptimizationOptimization----Based ClusteringBased ClusteringBased ClusteringBased Clustering    

    

3.1. The NPThe NPThe NPThe NP----MethodMethodMethodMethod    

The nested partitions (NP) method is an 

optimization method that has been suggested by 

Shi and Olafsson (2000) to solve general global 

optimization problems of the following form: 

                             )(min x
x

f
X∈

                         

(1)       
where x is a point in a n -dimensional space X  

and R→Xf :  is a real-valued performance 

measure defined on this space. This performance 

may or may not be known deterministically. In our 

context, X  is the space of all clusters and 

measures some quality of the clusters. 

 The intuitive idea of the NP method is quite 

simple. In each step, the method systematically 

partitions the feasible region into subsets and 

focus the computational effort in those subsets 

that are considered promising. The main 

components of the method are: 

 

� PartitioningPartitioningPartitioningPartitioning: at each iteration the feasible 

region is partitioned into subsets that cover 

the feasible region but concentrate the search 

in what is believed to be the most promising 

region. 

� Random samplingRandom samplingRandom samplingRandom sampling: to evaluate each of the 

subsets, a random sample of solutions are 

obtained from each subset and used to 

estimate the performance of the region as a 

whole. 

 

This method can be understood as an optimization 

framework that combines adaptive global sampling 

with local heuristic search. It uses a flexible 

partitioning method to divide the design space into 

regions that can be analyzed individually and then 

aggregates the results from each region to 

determine how to continue the search, that is, to 

concentrate the computational effort. Thus, the NP 

method adaptively samples from the entire design 

space and concentrates the sampling effort by 

systematic partitioning of the design space. 

 To implement the partitioning, the NP 

method maintains in the kth iteration what is called 

the most promising region, that is, a subregion 

XX ⊆)(k  that is considered the most likely to 

contain the best solution. This most promising 

region is partitioned into a given number of 

subregions and what remains is aggregated into 

one region called the surrounding region. Thus, a 

disjoint collection of sets covering the entire 

feasible region is considered. The subregions and 

the surrounding region are sampled using random 

sampling, and the sampling information used to 

determine which region should be the most 

promising  

region in the next iteration. If one of the 

subregions contains the best solution, this region 

is now selected as the new most promising region 

and is, in the next iteration, partitioned into 

smaller subregions. If the surrounding region 

contains the best solution this is taken as an 

indication that the last move might not have been 



2005 한국경영과학회/대한산업공학회 춘계공동학술대회 

2005 년 5 월 13 일~14 일, 충북대학교 

 - 624 - 

the best move, so the algorithm backtracks to 

what was the most promising region in the 

previous iteration. This partitioning creates a tree 

of subsets that we refer to as the partitioning tree. 

 

3.2. Defining ClDefining ClDefining ClDefining Clustersustersustersusters    

The partitional clustering problem can be 

formulated as an optimization problem and thus 

solved within the NP framework. In particular, we 

have designed the NP method as a partitional 

clustering method for nominal data and 

incorporated k-means into the same framework. In 

this approach we assume that we want to partition 

a given data set into k clusters and that each 

clusters is defined by its center (each instance is 

assigned to the closest center). The decision 

variables are thus the ith coordinate of the cth 

cluster, where ,,,2,1 ni Κ= .,,2,1 kc Κ= Therefore, this 

clustering problem reduces to locating the centers 

to optimize certain performance.  

 Selecting a performance measure to be 

optimized is very subjective, since determining 

what constitutes a good cluster is necessarily 

subjective and no single standard exists. We refer 

the reader to Estivill-Castro (2002) for a recent 

discussion of this issue and Grabmeyer and 

Rudolph (2002) for a more extensive survey. The 

most common measures are probably to maximize 

similarity within a cluster (that is, maximize 

homogeneity or compactness), and to minimize 

similarity between different clusters (that is, 

maximize separability between the clusters). A 

particular strength of the optimization-based 

framework is that any such measure, or 

combination of measures, can be adopted. Indeed, 

the function f can be defined as any measure of 

what is believed to indicate the quality of a cluster.  

 To minimize bias that may be introduced by 

analyzing very specific performance measures, we 

restrict ourselves here to a single measure of 

similarity within cluster, namely, its compactness: 

         [ ]
2

1

)()2()1( ),,( ∑∑
Ψ∈ =

−=

y

n

i

ii
k xyf y

xxx Κ        (2) 

Here  Ψ  is the space of all instances, Ψ∈y  is a 

specific instance in this space, [ ]y
x is the cluster 

center to which the instance is assigned, and 
[ ]y
ii xy − is the difference between the ith 

coordinate of the instance and the corresponding 

center.  

 We believe that by using such a simple 

measure we are better able to focus on the 

performance of the algorithm itself. For a 

particular application, however, this will without 

doubt be defined in a different fashion, but that 

will not change the implementation of the 

algorithm. 

 

3.3. PartitioningPartitioningPartitioningPartitioning    

The main implementation issue for applying 

NP is to define the partitioning. We suggest doing 

this by finding cluster centers for one feature at a 

time, that is, at each level of the partitioning tree 

the values for all the centers are limited to a given 

range for one feature. This defines the subsets or 

region that form the partitioning tree. Then, as for 

the generic NP method, random samples are 

obtained from each subset and to speed 

convergence the k-means algorithm is applied to 

those random samples and the resulting improved 

centers used to select the most promising region. 

This most promising region is the partitioned 

further, the surrounding region aggregated, and so 

forth.  

 Figure 1 demonstrates a partial partitioning 

tree where the first feature can take four different 

values, that is { },4,3,2,11∈x  and the problem is to 

find the optimal location of k = 2 clusters 

(identified as C1 and C2). This partitioning 

approach helps with the scalability of the method 

with respect to the feature dimension. It focuses 

on fixing one feature at a time and is in that sense 

monothetic, but not fully so as all features are 

randomly assigned values during the random 

sampling stage, and thus all the feature are used 

simultaneously to select subregions. This 

approach can thus be though of as having 

elements of both monothetic and polythetic 

clustering. 
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Figure 1. Partial Partitioning Tree for Locating Two 

Clusters (Feature Fixed in Two Clusters) 

 

 It is also important to note that the 

partitioning tree imposes a structure on the space 

of all possible clusters, and thus determines the 

efficiency of the search through this space. 

Furthermore, the partitioning tree is simply 

determined by the order in which features are 

fixed, and investigating effective methods for 

ordering features for this purpose is an important 

future research topic. 

 

3.4. Numerical EvaluationNumerical EvaluationNumerical EvaluationNumerical Evaluation    

  To evaluate the effectiveness of the NP-

based clustering approach, which we call algorithm 

NPCLUSTER, we compare it with the PAM 

algorithm, which is a variant of the k-medoids 

approach (Kaufman and Rousseeuw, 1990), and its 

more scalable variations of CLARA and CLARANS 

(Ng and Han, 1994). The motivation for the 

selection of these algorithms for comparison is 

that like NPCLUSTER, these algorithms use a 

partitional approach to identify cluster centers and 

employ a random sampling strategy to improve 

scalability.  

 We use a small but realistic data set from 

the UCI Repository of Machine Learning 

Databases (Blake and Merz, 1998), namely the 

breast cancer data set. We use two variants of this 

data set, which we refer to as ‘large’ and ‘small,’ 

with 699 and 286 instances, respectively. Both 

variants of the set have 9 features. The results for 

the large data are shown in Table 1 and those for 

the small data in Table 2.  
 

Table 1. Comparison of Algorithms for Large Data Set 

Algorithm Similarity Value Computation Time 

NPCLUSTER 3292 ± 16 3.7 • 105 

PAM 3166 ± 0.5 102.6 • 105 

CLARA 5026 ± 54 1.7 • 105 

CLARANS 3620 ± 29 5.2 • 10
5
 

 

Table 2. Comparison of Algorithms for Small Data Set 

Algorithm Similarity Value Computation Time 

NPCLUSTER 1128 ± 16 6.9 • 104 

PAM 978 ± 2 192.4 • 104 

CLARA 1971 ± 21 1.8 • 10
4
 

CLARANS 1151 ± 9 2.1 • 104 

 

 The quality of the clusters obtained is 

measured by the compactness or average 

similarity value (2) of the clusters. The smaller 

this value, the better the clustering. We note that 

although PAM has the best performance in terms 

of similarity values, it comes at a very high 

computation cost. By using sampling (NPCLUSTER, 

CLARA, CLARANS), the computation time can be 

reduced by two orders of magnitude. The CLARA 

algorithm, on the other hand, uses the least 

computation time for both data sets but the quality 

of the clusters is not satisfactory compared to the 

other methods. The NPCLUSTER and CLARANS 

seem to strike the best balance between speed 

and cluster quality and NPCLUSTER is particularly 

attractive for the larger data.  

 The ability of the NPCLUSTER method to 

use sampling and still obtain high quality solution 

stems from the fact that when an incorrect move 

is made in the partitioning tree, it can be corrected 

in the next (or a later) iteration, when a new 

sample of instances indicates that this was the 

wrong move. Thus, if there is large amount of 

noise in the performance estimates (i.e., a small 

sample of instance is used), then the algorithm 

may backtrack frequently. Frequent backtracking 

implies more iterations, and thus increases 

computation time so there is a tradeoff between 

fast computation in each iteration and needing 

more iterations when reducing the instance sample 

size. However, we note that the NPCLUSTER 

algorithm achieves this balance in an automated 

manner. 



2005 한국경영과학회/대한산업공학회 춘계공동학술대회 

2005 년 5 월 13 일~14 일, 충북대학교 

 - 626 - 

 

4. ScalabilityScalabilityScalabilityScalability    

    

As has been noted above, repeated 

calculation of cluster performance according to (2) 

is time consuming and a more scalable approach is 

to use an estimate 

                      ),,,( )()2()1(
Ιxxx

kf Κ                     

(3) 

that is calculated from a (small) subset IIII    of the set 

of all instances. The key questions to be answered 

is how much savings in computation time can be 

achieved by using this estimate, what is the best 

sample size Ι , and how sensitive the clustering 

algorithm performance is to this sample size. 

 To obtain some tentative answers to these 

questions and to demonstrate feasibility for the 

scalability improvements that are possible by 

using sampling, we apply the NP-based clustering 

method described above to the same two data sets 

as before. The numerical results are reported in 

Table 3, which shows the solution quality 

(similarity value), computation time, and average 

amount of backtracks for varying amounts of 

sampling. These results clearly indicate that 

random sampling can be effectively used to 

achieve substantial computational benefits without 

sacrificing solution quality. We recall that here 

solution quality is defined by equation (2) as being 

a measure of within cluster similarity or 

compactness, that is the sum of the deviation of 

instances from the cluster center of the cluster to 

which they are assigned.  

 For example, using 25% of the small data 

set reduces the computation time by 69% while 

the similarity only increases by 2% and is within 

two standard deviations of the value without 

sampling. Similarly for the large data set, by using 

5% of the instances in each step, computational 

time can be reduce by 90% while similarity value 

is only increased by 2 percent.  

 Furthermore, the performance is not very 

sensitive to exact selection of amount of sampling. 

For example, for both problems the performance 

when 5% of instances is used is very similar to the 

performance when 25% of instances is used. Thus, 

the iterative nature of the NP-based clustering 

algorithm, and its automatic backtracking feature, 

allows us to achieve significant computational 

improvements without exact calibration of how 

many instances are needed.  

 

Table 3. Numerical Results for Different Percentage of 

instances Used 

Data Set Fraction 

Similarity 

Value 

Avg. ±  S.E.  

Computation  

Time 

Avg. ±  S.E. 

Backtracking 

Avg. ±  S.E. 

100% 4259.0 ± 46 394777 ± 6668 0.14 ± 0.05 

50% 4207.7 ± 53 101666 ± 1352 0.08 ± 0.04 

25% 4264.7 ± 51 43794 ± 498 0.08 ± 0.04 

5% 4363.4 ± 41 38966 ± 590 0.10 ± 0.05 

Large  

0.5% 4401.1 ± 49 44065 ± 775 0.14 ± 0.06 

100% 1302.3 ± 13 84115 ± 3166 0.72 ± 0.10 

50% 1276.6 ± 15 27295 ± 901 0.30 ± 0.07 

25% 1322.9 ± 12 25699 ± 689 0.56 ± 0.19 

5% 1363.1 ± 13 27698 ± 960 0.44 ± 0.12 

Small 

0.5% 1430.9 ± 12 33773 ± 1203 0.34 ± 0.08 

 

 
Table 4. Estimated Coefficient of variation 

Fraction CV 

100% 16.9 • 102 

50% 1.33 • 102 

25% 1.14 • 10
2
 

5% 1.51 • 10
2
 

0.5% 1.76 • 102 

 
 We also note that the variability of the 

performance (as measured by the standard error 

reported in Table 3) is stable. This is somewhat 

surprising as one might expect that dealing with 

the noisier sets corresponding to a small sample of 

the original data might give rise to higher 

variability. The fact that such an increase is not 

observed is an indication that the NP-based 

clustering is very effective in dealing with such 

uncertainty.  

 There is, on the other hand, a significant 

observed change in the variability of the 

computing time. For both test problems, the 

variability is the least for when using 25% of the 

database, which also corresponds to the shortest 

computation time. The reduction in variability is 

not, however, solely explained by the shorter 

computation time as the estimated coefficient of 

variation (standard error divided by the average) 

shows a similar pattern. For example, for the 

larger problem the estimated coefficient of 

variation is shown in Table 4. Thus, we conclude 

that sampling does not only reduce the 

computation time, but the computation time is 

more stable when the sample size is selected 

appropriately. 
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5. Conclusions and Future ResearConclusions and Future ResearConclusions and Future ResearConclusions and Future Researchchchch    

    

Clustering is one of the most important 

areas of knowledge discovery in databases, and 

the use of optimization techniques for clustering 

offers considerable promise. The scalability of 

such techniques is one of the key issues to be 

addressed as the field progresses. In particular, 

scalability with respect to increasing number of 

instances is critical as databases become ever 

larger. One way of dealing with this issue is to use 

a subset of all instances for the learning algorithm. 

The obvious tradeoff is between computational 

issues, where fewer instances imply faster 

learning, and solution quality, where using fewer 

instances may imply lower quality models.  

 We have designed an optimization bases 

approach to the partitional clustering problem 

where the algorithm is specifically designed to 

deal with noisy performance estimates, such as 

those that arise when only part of the data is used 

to create clusters. Numerical results show that 

considerable speedup can be achieved (up to 90% 

for the numerical examples) with no or minimal 

reduction in solution quality. Also, the algorithm is 

robust with respect to the amount of instances 

used so there is no need to carefully determine 

the fraction of the database that needs to be used.  

 There are numerous issues that should be 

addressed for further development of this 

methodology. For example, an extensive numerical 

evaluation on a variety of realistic and synthetic 

problems should be performed, relating the 

computational speedup to characteristics of the 

data, and developing heuristics for specifying 

amount of instances to be used and evaluating 

their robustness.  

 As noted in Section 3.3 above, determining 

intelligent ways of ordering the features is also a 

critical issue. The partitioning tree imposes a 

structure on the search space of all possible 

clusters and the order in which features are 

considered determines this structure. Thus, it an 

important future research topic is to investigate 

how the algorithm can be improved by determining 

a generic way of creating high quality partitioning 

for arbitrary clustering problems.  

 Finally, the ability of this approach to handle 

arbitrary performance functions opens up some 

interesting possibilities. In this paper we only 

considered a measure of cluster compactness, but 

as noted in Section 3.2, any measure can be used. 

Thus, it is of interest to apply the new algorithm 

with various measures of cluster performance and 

compare qualities of the resulting cluster. In other 

words, by using the same optimization 

methodology, but different measures of what 

makes a good cluster, and analyzing the resulting 

clusters, we believe insights into data clustering in 

general could be obtained. 
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