
2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 621 -

An Optimization Approach to Data ClusteringAn Optimization Approach to Data ClusteringAn Optimization Approach to Data ClusteringAn Optimization Approach to Data Clustering

Jumi Kima, Sigurdur Ólafssonb

aEntrue Consulting Partners, LG CNS

25F, Seoul Finance Center, 84 Taepyungro 1-ga,

Chung-gu, Seoul, Korea, 100-768

jumikim@lgcns.com

AbstractAbstractAbstractAbstract

Scalability of clustering algorithms is critical

issues facing the data mining community. This is

particularly true for computationally intense tasks

such as data clustering. Random sampling of

instances is one possible means of achieving

scalability but a pervasive problem with this

approach is how to deal with the noise that this

introduces in the evaluation of the learning

algorithm. This paper develops a new optimization

based clustering approach using an algorithms

specifically designed for noisy performance.

Numerical results illustrate that with this algorithm

substantial benefits can be achieved in terms of

computational time without sacrificing solution

quality.

1. Introduction Introduction Introduction Introduction

In recent years databases in modern

enterprises have become massive and contain a

wealth of important data. However, when

traditional methods of analysis fall short in

transforming this data into knowledge, exploratory

techniques such as knowledge discovery in

databases must be applied. This multidisciplinary

field of data mining draws heavily on statistics and

artificial intelligence, but numerous problems in

data mining and knowledge discovery can also be

formulated as optimization problems, and

optimization techniques can therefore be used to

solve large-scale data mining problems (Basu,

1998; Bradley et al., 1999).

As the importance of data mining has grown,

one of the critical issues to emerge is how to scale

data mining techniques to larger and larger

databases (Bradley et al., 2002). This is

particularly true for computationally intensive data

mining tasks such as identifying natural clusters of

instances (Kaufman and Rousseeuw, 1990).

Several approaches to scalability enhancements

have been studied at length in the literature

(Provost and Kolluri, 1999), including using

parallel mining algorithms (Forman and Zhang,

2000) and preprocessing the data by filtering out

redundant or irrelevant features and thus reducing

the dimensionality of the database (Ólafsson,

2003). Another approach to better scalability is

using a selection of instance from a database

rather than the entire database (Liu and Motoda,

2001). This paper deals with such instance

selection and how it can be applied to data

clustering within an optimization-based framework.

Perhaps the simplest approach to instance

selection is random sampling (Kiven and Mannila,

1994). Numerous authors have studied this

approach for specific data mining tasks such as

clustering (Kaufman and Rousseeuw, 1990; Ng and

Han, 1994, Ester, Kriegel, and Xu, 1995),

association rule discovery (Toivonen, 1996), and

decision tree induction (Chauchat and

Rakotomalala, 2001). When implementing this

approach, the most challenging issue is

determining a sample size that improves

performance of the algorithm without sacrificing

solution quality. Bounds can be developed that

allow for a prediction of sample effort needed, but

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 622 -

such bounds usually require knowing certain

problem parameters and typically overestimate the

necessary sample size (Toivonen, 1996). On the

other hand, too small a sample will lead to a bias

and degeneration in performance. One possible

solution is to use adaptive sampling (Domingo,

Gavalde, and Watanabe, 2000; Provost, Jensen,

and Oates, 1999).

In this paper we advocate an alternative

approach that is based on a novel formulation of

the clustering task as an optimization problem. We

also take advantage of the fact that certain

optimization techniques have been explicitly

designed to account for noisy performance

estimates, such as are common when performance

is estimated using simulation. In particular, one

such method is the nested partitions method that

can be used to solve general global optimization

problems (Shi and Olafsson, 2000) and specifically

combinatorial type optimization problems with

noisy performance (Olafsson, 1999). A defining

characteristic of this method is that wrong moves

made due to noise in performance estimates can

be automatically corrected in a later move. In the

scalable clustering context this means that nosier

performance estimates, resulting from smaller

samples of instances, may result in more steps

taken by the algorithm but any bias will be

automatically corrected. This eliminates the need

to determine the exact sample size, although the

computational performance of the algorithm may

still depend to some extent on how it is selected.

The reminder of this paper is organized as

follows. In Section 2 we briefly review clustering

techniques and in particular, focus on efforts in

scalable clustering. In Section 3 we present the

optimization-based clustering algorithm and

demonstrate its effectiveness on a sample

problems. In Section 4 we present some numerical

results on the scalability of the algorithm with

respect to the instance dimension, and Section 5

contains concluding remarks and suggestions for

future research directions.

2. Scalable ClusteringScalable ClusteringScalable ClusteringScalable Clustering

Clustering has been an active area of

research for several decades, and many clustering

algorithms have been proposed in the literature

(Kaufman and Rousseeuw, 1990; Grabmeier and

Rudolph, 2002). In particular, considerable

research has been devoted specifically to scalable

clustering. We will start by briefly describing the

various types of clustering algorithms and then

mention some specific scalable methods.

Clustering algorithms can be roughly divided

into two categories: hierarchical clustering and

partitional clustering (Jain, Murty, and Flynn,

1999). In hierarchical clustering all of the

instances are organized into a hierarchy that

describes the degree of similarity between those

instances (e.g., a dendrogram). Such

representation may provide a great deal of

information, but the scalability of this approach is

questionable as the number of instances grows.

Partitional clustering, on the other hand, simply

creates one partition of the data where each

instance falls into one cluster. Thus, less

information is obtained but the ability to deal with

a large number of instances is improved. Examples

of the partitioning approach are the classic k-

means and k-medoids clustering algorithms.

There are many other characteristics of

clustering algorithms that must be considered to

ensure scalability of the approach. For example,

most clustering algorithms are polythetic, meaning

that all features are consider simultaneously in

tasks such as to determine the similarity of two

instances. However, as the number of features

becomes large this may pose scalability problems

and it may be necessary to restrict attention to

monothetic clustering algorithms that consider

features one at a time. Most clustering algorithm

are also non-incremental in the sense that all of

the instances are considered simultaneously.

However, there are a few algorithms that are

incremental, which implies that they consider each

instance separately. Such algorithms are

particularly useful when the number of instances is

large and keeping the entire set of instances in

memory poses scalability problems.

Scalable clustering has received

considerable attention in recent years, and here

we will mention only a few of the methods that

have been developed. For example, Zhang,

Ramakrishnan, and Livny (1996) proposed BIRCH,

a hierarchical algorithm for clustering. The key

idea of this method is to summarize cluster

representations using two innovative concepts,

clustering feature and clustering feature tree.

Another approach to hierarchical clustering

is the CURE algorithm developed by Guha, Rastogi,

and Shim (1998). The steps of the CURE algorithm

are to obtain a sample from the original database,

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 623 -

partition the sample into a set of partitions and

then cluster each partition, eliminate outliers and

cluster the partial clusters. Finally, each data

instance is labeled with the corresponding cluster.

Improved scalable versions of partitioning

methods such as k-means and k-medoids have

also been developed. The Clustering LARge

Applications (CLARA) algorithm improves the

scalability of the PAM k-medoids algorithm by

applying PAM to multiple samples of the actual

data and returns the best clustering (Kaufman and

Rousseeuw, 1990). The CLARANS algorithm

improves on this approach by obtaining random

samples at each step, thus making the sampling

dynamic (Ng and Han, 1994).

A single pass k-means clustering algorithm

was proposed by Bradley, Fayyad, and Reina

(1998), with the main idea being to use a buffer to

save points from the database in a compressed

form. This approach was simplified in the

algorithm proposed by Farnstrom, Lewis, and

Elkan (2000), in an effort to reduce the overhead

that otherwise might cancel out any scalability

improvements that might be achieved.

Yet another way of improving scalability is

via distributed clustering, where instead of

combining all data before clustering, data sets are

operated on independently with minimum

communication between the parallel clustering

algorithms (Forman and Zhang, 2000).

The work presented in this paper is a

partitional clustering algorithm that attempts to

find cluster centers and uses random sampling to

improve scalability. In that sense, it is the most

similar to the CLARA and CLARANS algorithms,

but its optimization-based approach sets it apart.

3. OptimizationOptimizationOptimizationOptimization----Based ClusteringBased ClusteringBased ClusteringBased Clustering

3.1. The NPThe NPThe NPThe NP----MethodMethodMethodMethod

The nested partitions (NP) method is an

optimization method that has been suggested by

Shi and Olafsson (2000) to solve general global

optimization problems of the following form:

)(min x
x

f
X∈

(1)
where x is a point in a n -dimensional space X

and R→Xf : is a real-valued performance

measure defined on this space. This performance

may or may not be known deterministically. In our

context, X is the space of all clusters and

measures some quality of the clusters.

 The intuitive idea of the NP method is quite

simple. In each step, the method systematically

partitions the feasible region into subsets and

focus the computational effort in those subsets

that are considered promising. The main

components of the method are:

� PartitioningPartitioningPartitioningPartitioning: at each iteration the feasible

region is partitioned into subsets that cover

the feasible region but concentrate the search

in what is believed to be the most promising

region.

� Random samplingRandom samplingRandom samplingRandom sampling: to evaluate each of the

subsets, a random sample of solutions are

obtained from each subset and used to

estimate the performance of the region as a

whole.

This method can be understood as an optimization

framework that combines adaptive global sampling

with local heuristic search. It uses a flexible

partitioning method to divide the design space into

regions that can be analyzed individually and then

aggregates the results from each region to

determine how to continue the search, that is, to

concentrate the computational effort. Thus, the NP

method adaptively samples from the entire design

space and concentrates the sampling effort by

systematic partitioning of the design space.

 To implement the partitioning, the NP

method maintains in the kth iteration what is called

the most promising region, that is, a subregion

XX ⊆)(k that is considered the most likely to

contain the best solution. This most promising

region is partitioned into a given number of

subregions and what remains is aggregated into

one region called the surrounding region. Thus, a

disjoint collection of sets covering the entire

feasible region is considered. The subregions and

the surrounding region are sampled using random

sampling, and the sampling information used to

determine which region should be the most

promising

region in the next iteration. If one of the

subregions contains the best solution, this region

is now selected as the new most promising region

and is, in the next iteration, partitioned into

smaller subregions. If the surrounding region

contains the best solution this is taken as an

indication that the last move might not have been

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 624 -

the best move, so the algorithm backtracks to

what was the most promising region in the

previous iteration. This partitioning creates a tree

of subsets that we refer to as the partitioning tree.

3.2. Defining ClDefining ClDefining ClDefining Clustersustersustersusters

The partitional clustering problem can be

formulated as an optimization problem and thus

solved within the NP framework. In particular, we

have designed the NP method as a partitional

clustering method for nominal data and

incorporated k-means into the same framework. In

this approach we assume that we want to partition

a given data set into k clusters and that each

clusters is defined by its center (each instance is

assigned to the closest center). The decision

variables are thus the ith coordinate of the cth

cluster, where ,,,2,1 ni Κ= .,,2,1 kc Κ= Therefore, this

clustering problem reduces to locating the centers

to optimize certain performance.

 Selecting a performance measure to be

optimized is very subjective, since determining

what constitutes a good cluster is necessarily

subjective and no single standard exists. We refer

the reader to Estivill-Castro (2002) for a recent

discussion of this issue and Grabmeyer and

Rudolph (2002) for a more extensive survey. The

most common measures are probably to maximize

similarity within a cluster (that is, maximize

homogeneity or compactness), and to minimize

similarity between different clusters (that is,

maximize separability between the clusters). A

particular strength of the optimization-based

framework is that any such measure, or

combination of measures, can be adopted. Indeed,

the function f can be defined as any measure of

what is believed to indicate the quality of a cluster.

 To minimize bias that may be introduced by

analyzing very specific performance measures, we

restrict ourselves here to a single measure of

similarity within cluster, namely, its compactness:

 []
2

1

)()2()1(),,(∑∑
Ψ∈ =

−=

y

n

i

ii
k xyf y

xxx Κ (2)

Here Ψ is the space of all instances, Ψ∈y is a

specific instance in this space, []y
x is the cluster

center to which the instance is assigned, and
[]y
ii xy − is the difference between the ith

coordinate of the instance and the corresponding

center.

 We believe that by using such a simple

measure we are better able to focus on the

performance of the algorithm itself. For a

particular application, however, this will without

doubt be defined in a different fashion, but that

will not change the implementation of the

algorithm.

3.3. PartitioningPartitioningPartitioningPartitioning

The main implementation issue for applying

NP is to define the partitioning. We suggest doing

this by finding cluster centers for one feature at a

time, that is, at each level of the partitioning tree

the values for all the centers are limited to a given

range for one feature. This defines the subsets or

region that form the partitioning tree. Then, as for

the generic NP method, random samples are

obtained from each subset and to speed

convergence the k-means algorithm is applied to

those random samples and the resulting improved

centers used to select the most promising region.

This most promising region is the partitioned

further, the surrounding region aggregated, and so

forth.

 Figure 1 demonstrates a partial partitioning

tree where the first feature can take four different

values, that is { },4,3,2,11∈x and the problem is to

find the optimal location of k = 2 clusters

(identified as C1 and C2). This partitioning

approach helps with the scalability of the method

with respect to the feature dimension. It focuses

on fixing one feature at a time and is in that sense

monothetic, but not fully so as all features are

randomly assigned values during the random

sampling stage, and thus all the feature are used

simultaneously to select subregions. This

approach can thus be though of as having

elements of both monothetic and polythetic

clustering.

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 625 -

Figure 1. Partial Partitioning Tree for Locating Two

Clusters (Feature Fixed in Two Clusters)

 It is also important to note that the

partitioning tree imposes a structure on the space

of all possible clusters, and thus determines the

efficiency of the search through this space.

Furthermore, the partitioning tree is simply

determined by the order in which features are

fixed, and investigating effective methods for

ordering features for this purpose is an important

future research topic.

3.4. Numerical EvaluationNumerical EvaluationNumerical EvaluationNumerical Evaluation

 To evaluate the effectiveness of the NP-

based clustering approach, which we call algorithm

NPCLUSTER, we compare it with the PAM

algorithm, which is a variant of the k-medoids

approach (Kaufman and Rousseeuw, 1990), and its

more scalable variations of CLARA and CLARANS

(Ng and Han, 1994). The motivation for the

selection of these algorithms for comparison is

that like NPCLUSTER, these algorithms use a

partitional approach to identify cluster centers and

employ a random sampling strategy to improve

scalability.

 We use a small but realistic data set from

the UCI Repository of Machine Learning

Databases (Blake and Merz, 1998), namely the

breast cancer data set. We use two variants of this

data set, which we refer to as ‘large’ and ‘small,’

with 699 and 286 instances, respectively. Both

variants of the set have 9 features. The results for

the large data are shown in Table 1 and those for

the small data in Table 2.

Table 1. Comparison of Algorithms for Large Data Set

Algorithm Similarity Value Computation Time

NPCLUSTER 3292 ± 16 3.7 • 105

PAM 3166 ± 0.5 102.6 • 105

CLARA 5026 ± 54 1.7 • 105

CLARANS 3620 ± 29 5.2 • 10
5

Table 2. Comparison of Algorithms for Small Data Set

Algorithm Similarity Value Computation Time

NPCLUSTER 1128 ± 16 6.9 • 104

PAM 978 ± 2 192.4 • 104

CLARA 1971 ± 21 1.8 • 10
4

CLARANS 1151 ± 9 2.1 • 104

 The quality of the clusters obtained is

measured by the compactness or average

similarity value (2) of the clusters. The smaller

this value, the better the clustering. We note that

although PAM has the best performance in terms

of similarity values, it comes at a very high

computation cost. By using sampling (NPCLUSTER,

CLARA, CLARANS), the computation time can be

reduced by two orders of magnitude. The CLARA

algorithm, on the other hand, uses the least

computation time for both data sets but the quality

of the clusters is not satisfactory compared to the

other methods. The NPCLUSTER and CLARANS

seem to strike the best balance between speed

and cluster quality and NPCLUSTER is particularly

attractive for the larger data.

 The ability of the NPCLUSTER method to

use sampling and still obtain high quality solution

stems from the fact that when an incorrect move

is made in the partitioning tree, it can be corrected

in the next (or a later) iteration, when a new

sample of instances indicates that this was the

wrong move. Thus, if there is large amount of

noise in the performance estimates (i.e., a small

sample of instance is used), then the algorithm

may backtrack frequently. Frequent backtracking

implies more iterations, and thus increases

computation time so there is a tradeoff between

fast computation in each iteration and needing

more iterations when reducing the instance sample

size. However, we note that the NPCLUSTER

algorithm achieves this balance in an automated

manner.

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 626 -

4. ScalabilityScalabilityScalabilityScalability

As has been noted above, repeated

calculation of cluster performance according to (2)

is time consuming and a more scalable approach is

to use an estimate

),,,()()2()1(
Ιxxx

kf Κ

(3)

that is calculated from a (small) subset IIII of the set

of all instances. The key questions to be answered

is how much savings in computation time can be

achieved by using this estimate, what is the best

sample size Ι , and how sensitive the clustering

algorithm performance is to this sample size.

 To obtain some tentative answers to these

questions and to demonstrate feasibility for the

scalability improvements that are possible by

using sampling, we apply the NP-based clustering

method described above to the same two data sets

as before. The numerical results are reported in

Table 3, which shows the solution quality

(similarity value), computation time, and average

amount of backtracks for varying amounts of

sampling. These results clearly indicate that

random sampling can be effectively used to

achieve substantial computational benefits without

sacrificing solution quality. We recall that here

solution quality is defined by equation (2) as being

a measure of within cluster similarity or

compactness, that is the sum of the deviation of

instances from the cluster center of the cluster to

which they are assigned.

 For example, using 25% of the small data

set reduces the computation time by 69% while

the similarity only increases by 2% and is within

two standard deviations of the value without

sampling. Similarly for the large data set, by using

5% of the instances in each step, computational

time can be reduce by 90% while similarity value

is only increased by 2 percent.

 Furthermore, the performance is not very

sensitive to exact selection of amount of sampling.

For example, for both problems the performance

when 5% of instances is used is very similar to the

performance when 25% of instances is used. Thus,

the iterative nature of the NP-based clustering

algorithm, and its automatic backtracking feature,

allows us to achieve significant computational

improvements without exact calibration of how

many instances are needed.

Table 3. Numerical Results for Different Percentage of

instances Used

Data Set Fraction

Similarity

Value

Avg. ± S.E.

Computation

Time

Avg. ± S.E.

Backtracking

Avg. ± S.E.

100% 4259.0 ± 46 394777 ± 6668 0.14 ± 0.05

50% 4207.7 ± 53 101666 ± 1352 0.08 ± 0.04

25% 4264.7 ± 51 43794 ± 498 0.08 ± 0.04

5% 4363.4 ± 41 38966 ± 590 0.10 ± 0.05

Large

0.5% 4401.1 ± 49 44065 ± 775 0.14 ± 0.06

100% 1302.3 ± 13 84115 ± 3166 0.72 ± 0.10

50% 1276.6 ± 15 27295 ± 901 0.30 ± 0.07

25% 1322.9 ± 12 25699 ± 689 0.56 ± 0.19

5% 1363.1 ± 13 27698 ± 960 0.44 ± 0.12

Small

0.5% 1430.9 ± 12 33773 ± 1203 0.34 ± 0.08

Table 4. Estimated Coefficient of variation

Fraction CV

100% 16.9 • 102

50% 1.33 • 102

25% 1.14 • 10
2

5% 1.51 • 10
2

0.5% 1.76 • 102

 We also note that the variability of the

performance (as measured by the standard error

reported in Table 3) is stable. This is somewhat

surprising as one might expect that dealing with

the noisier sets corresponding to a small sample of

the original data might give rise to higher

variability. The fact that such an increase is not

observed is an indication that the NP-based

clustering is very effective in dealing with such

uncertainty.

 There is, on the other hand, a significant

observed change in the variability of the

computing time. For both test problems, the

variability is the least for when using 25% of the

database, which also corresponds to the shortest

computation time. The reduction in variability is

not, however, solely explained by the shorter

computation time as the estimated coefficient of

variation (standard error divided by the average)

shows a similar pattern. For example, for the

larger problem the estimated coefficient of

variation is shown in Table 4. Thus, we conclude

that sampling does not only reduce the

computation time, but the computation time is

more stable when the sample size is selected

appropriately.

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 627 -

5. Conclusions and Future ResearConclusions and Future ResearConclusions and Future ResearConclusions and Future Researchchchch

Clustering is one of the most important

areas of knowledge discovery in databases, and

the use of optimization techniques for clustering

offers considerable promise. The scalability of

such techniques is one of the key issues to be

addressed as the field progresses. In particular,

scalability with respect to increasing number of

instances is critical as databases become ever

larger. One way of dealing with this issue is to use

a subset of all instances for the learning algorithm.

The obvious tradeoff is between computational

issues, where fewer instances imply faster

learning, and solution quality, where using fewer

instances may imply lower quality models.

 We have designed an optimization bases

approach to the partitional clustering problem

where the algorithm is specifically designed to

deal with noisy performance estimates, such as

those that arise when only part of the data is used

to create clusters. Numerical results show that

considerable speedup can be achieved (up to 90%

for the numerical examples) with no or minimal

reduction in solution quality. Also, the algorithm is

robust with respect to the amount of instances

used so there is no need to carefully determine

the fraction of the database that needs to be used.

 There are numerous issues that should be

addressed for further development of this

methodology. For example, an extensive numerical

evaluation on a variety of realistic and synthetic

problems should be performed, relating the

computational speedup to characteristics of the

data, and developing heuristics for specifying

amount of instances to be used and evaluating

their robustness.

 As noted in Section 3.3 above, determining

intelligent ways of ordering the features is also a

critical issue. The partitioning tree imposes a

structure on the search space of all possible

clusters and the order in which features are

considered determines this structure. Thus, it an

important future research topic is to investigate

how the algorithm can be improved by determining

a generic way of creating high quality partitioning

for arbitrary clustering problems.

 Finally, the ability of this approach to handle

arbitrary performance functions opens up some

interesting possibilities. In this paper we only

considered a measure of cluster compactness, but

as noted in Section 3.2, any measure can be used.

Thus, it is of interest to apply the new algorithm

with various measures of cluster performance and

compare qualities of the resulting cluster. In other

words, by using the same optimization

methodology, but different measures of what

makes a good cluster, and analyzing the resulting

clusters, we believe insights into data clustering in

general could be obtained.

ReferencesReferencesReferencesReferences

[1] Basu, A. (1998). Perspectives on operations

research in data and knowledge management.

European Journal of Operational Research, 111, 1-

14.

[2] Blake, C.L. and C.J. Merz (1998). UCI

Repository of Machine Learning Databases

[http://www.ici.uci.edu/mlearn/MLRepository.html

]. Department of Information and Computer

Science, University of California, Irvine, CA.

[3] Bradley, P., U. Fayyad, and C. Reina (1998).

Scaling clustering algorithms to large databases. In

Proceedings of the Fourth International

Conference on Knowledge Discovery and Data

Mining, 9-15.

[4] Bradley, P., J. Gehrke, R. Ramakrishnan, and

R. Srikant (2002). Scaling mining algorithms to

large databases. Communications of the ACM

45(8), 38-43.

[5] Bradley, P.S., Mangasarian, O.L., and Street,

W.N. (1998). Feature selection via mathematical

programming, INFORMS Journal on Computing, 10,

209-217.

[6] Chauchat, J-H. and R. Rakotomalala (2001).

Sampling strategies for building decision trees

from very large databases comprising many

continuous attributes. In Liu and Motada (eds.)

Instance Selection and Construction for Data

Mining, Kluwer.

[7] Domingo, C. Gavalda R., and Watanabe, R.

(2000). Adaptive Sampling Methods for Scaling Up

Knowledge discovery. In Journal of Knowledge

Discovery and Data Mining.

2005 한국경영과학회/대한산업공학회 춘계공동학술대회

2005 년 5 월 13 일~14 일, 충북대학교

 - 628 -

[8] Estevill-Castro, V. (2002). Why so many

clustering algorithms - a position paper. SIGKDD

Explorations 4(1), 65-75.

[9] Ester, M., H.-P. Kriegel, and X. Xu (1995).

Knowledge discovery in large spatial databases:

Focusing techniques for efficient class

identification. In Proc. 4th Int. Symp. Large Spatial

Databases, 67-82.

[10] Farnstrom, F., J. Lewis, and C. Elkan (2000).

Scalability for clustering algorithms revisited.

SIGKDD Explorations 2(1),51-57.

[11] Forman, G. and B. Zhang (2000). Distributed

data clustering can be efficient and exact. SIGKDD

Explorations 2(2), 34-38.

[12] Guha, S. R. Rastogi, and K Shim (1998).

CURE: An efficient clustering algorithm for large

databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data,

73-84.

[13] Grabmeier, J. and A. Rudolph (2002).

Techniques of cluster algorithms in data mining.

Data Mining and Knowledge Discovery 6, 303-360.

[14] Jain, A.K., Murty, M.N. and Flynn, P.J. (1999).

Data clustering: a review. ACM Computing

Surveys 31, 264 - 323.

[15] John, G. and P. Langley (1996). Static versus

dynamic sampling for data mining. In Proceedings

of the Second International Conference on

Knowledge Discovery and Data Mining, 367-370.

[16] Kaufman, L. and P.J. Rousseeuw (1990).

Finding Groups in Data: An Introduction to Cluster

Analysis. John Wiley & Sons, New York.

[17] Kiven, J. and H. Mannila (1994). The power of

sampling in knowledge discovery. In ACM

Symposium on Principles of Database Theory, 77-

85.

[18] Liu, H. and H. Motoda (2001). Instance

Selection and Construction for Data Mining,

Kluwer.

[19] Ng, R.T. and J. Han (1994). Efficient and

Effective Clustering Methods for Spatial Data

Mining. In Proceedings of 20th International

Conference on Very Large Data Bases.

[20] Olafsson, S. (2003). Improving scalability of

e-commerce systems with knowledge discovery.

In Prabu, Kumara and Kamath (eds.) Scalable

Enterprise System - An Introduction to Recent

Advances, Kluwer.

[21] Provost, F., D. Jenson, and T. Oates (1999).

Efficient progressive sampling. In Proceedings of

the Fifth International Conference on Knowledge

Discovery and Data Mining, 23-32.

[22] Provost, F. and V. Kolluri (1999). A survey of

methods for scaling up inductive algorithms. Data

Mining and Knowledge Discovery 3: 131-169.

[23] Shi, L. and S. Olafsson (2000). Nested

partitions method for global optimization.

Operations Research 48, 390-407.

[24] Toivonen, H. (1996). Sampling large

databases for association rules. In Proceedings of

the 22nd International Conference on Very Large

Databases, 134-145.

[25] Zhang, T., R. Ramakrishnan, and M. Livny

(1996). BIRCH: An efficient data clustering method

for very large databases. In Proceedings of the

ACM SIGMOD International Conference on

Management of Data, 103-114.

	MAIN
	TABLE OF CONTENTS

