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Multiresponse Optimization: A Literature Review and Research Opportunities

ABSTRACT

A common problem encountered in product or
process design is the selection of optimal
parameter levels which involve simultaneous
consideration of multiresponse variables. A
multiresponse problem is solved through three
major stages: data collection, model building, and
optimization. To date, various methods have been
proposed for the optimization stage, including the
desirability function approach and loss function
approach. In this paper, we first propose a
framework classifying the existing studies and
then propose some promising directions for
future research.

1. INTRODUCTION

Response surface methodology consists of a
group of techniques used in empirical study of
the relationship between a response and a
number of input variables. Consequently, the
experimenter attempts to find the optimal setting
for the input wvariables that maximizes (or
minimizes) the response (Box and Draper (1987),
Khuri and Cornell (1996), Myers and Montgomery
(2002)).

Most of the work in response surface
methodology has focused on the case where
there is only one response of interest. However,
a common problem in product or process design
is to determine the optimal parameter levels
when there are multiple responses which should
be considered simultaneously. Such a problem is
called a multiresponse problem (Khuri (1996)).

The multiresponse problem consists of three
stages: data collection (by the experimental
design), model building, and optimization. In the

optimization stage, two questions must be
addressed:  “what-to-optimize”  (optimization
goal) and  “how-to-optimize-it” (solution

technique). This paper focuses on the “what-to-
optimize” aspect, assuming that the data have
been collected and the response models have
been fitted reasonably well. A multiresponse
optimization problem is formally defined as:

Optllee [),}l (X)a ),}2 (X),A s .);k (X)] (1)
st. xXeQ,
where y{x) denotes the estimated th response (/

=1, -, k), x is an input variable vector, and Q is
the experimental region.
To date, various methods have been

proposed for multiresponse optimization,
including the desirability function approach and
loss function approach. This paper reviews and
classifies the existing work and then proposes
some promising directions for future research.
Section 2 reviews the existing approaches in
multiresponse optimization. In Section 3, a new
framework of classification is introduced and the
existing work is classified based on the

framework. Finally, conclusions and future

research directions are made in Section 4.

2. EXISTING APPROACHES IN
MULTIRESPONSE OPTIMIZATION

The existing studies in multiresponse

optimization can be categorized into six major
approaches: graphical, priority—based,
desirability function, loss function, process
capability, and probability-based approach. The
last five approaches can be grouped into an
analytical approach. They take a common
strategy that reduces the multidimensional
problem in (1) into a one-dimensional one and
then solves it. Each approach is reviewed below.

2.1. Graphical approach

The graphical approach superimposes the
response contour plots and determines an optimal
solution by a visual inspection (Lind et a/. (1960)).
It had been widely used before analytical
methods were developed (Hill and Hunter (1966)).
This approach has a shortcoming that its
usefulness is severely limited by the number of
input variables and/or response. Notwithstanding,
it has been utilized until recently due to its
simplicity and intuitiveness (Gupta et al (2001),
Hamed and Sakr (2001), Theppaya and
Prasertsan (2004), Huang et a/ (2004), Huang et
al. (2005)).

2.2. Priority-based approach

The priority-based approach selects the
most important response among a number of
responses and uses it as the objective function.
The other responses are employed as
constraints:
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Optimize y,(x)
st. p(x)eR;, s=LK,k(s#p), (2)
xe ),

where y,(x) and p{x) denote the estimated
primary and secondary response, respectively,
and R, is a set of requirements for yy(x).

Assuming there are only two responses of
interest, Myers and Carter (1973) proposed an
optimization formulation that maximizes (or
minimizes) the primary response with an equality
constraint on the other response. Biles (1975)
extended this idea by allowing not only more than
two responses, but also inequality constraints on
the secondary responses. Del Castillo (1996)
proposed an optimization formulation that treats
the confidence regions for the stationary points
of responses as constraints. More specifically, it
first finds a stationary point of each response and
then computes the confidence regions for the
stationary points of responses. These confidence
regions are used as constraints in (2).

The priority-based approach has the
advantage of utilizing the existing methods in
optimization. However, it does not fulfill the
philosophy of the multiresponse problem to
simultaneously consider the multiple responses
(Kim et al. (2002)).

2.3. Desirability function approach

The desirability function approach transforms
an estimated response (e.g., the #th estimated
response ¥) into a scale-free value, called a
desirability (denoted as d; for y). It is a value
between O and 1, and increases as the
corresponding response value becomes more
desirable. The overall desirability D, another
value between 0 and 1, is defined by combining
the individual desirability values (.e., d;s). Then,
the optimal setting is determined by optimizing D.

Harrington (1965) first proposed a simple
form of a desirability function. Derringer and
Suich (1980) extended Harrington's approach by
suggesting a more systematic transformation
scheme from y; to d. As an example, in the case

of a larger-the-better-type response, the
desirability function is given as:
0, P <y,
A min 4
d, = -1 . Ymin < (x) <y (3)
Yimax _ Yl_mm
1 Pi(x) > 7™,

where ¥/™" is the minimum acceptable value of ¥,
V"™ is the value of y; after which the degree of
satisfaction does not increase, and ¢ is a

parameter determining the desirability function

shape. The desirability function proposed by
Derringer and Suich contains non-differentiable
points as shown in (3). Del Castillo et al. (1996)
proposed modified desirability functions that are
everywhere differentiable so that an efficient
gradient-based optimization method, which
requires a differentiability assumption, can be
used.

The overall desirability can be obtained by
aggregating the individual desirability functions
using the geometric mean:

Dz(dlxdzx/\ xdk)l/k. (4)
Later, different forms of aggregation have been
proposed. For example, Derringer (1994)
proposed the use of a weighted geometric mean.
Kim and Lin (2000) suggested maximizing the
lowest d;, which is equivalent to maximizing the
overall degree of satisfaction of all the responses.

The past studies in the desirability function
approach focused mainly on the location effects
of responses. However, as the Taguchi’'s robust
design concept prevails, the recent studies
attempt to consider the dispersion effects as well
as the location effects (Tong et al (2001),
Ribardo and Allen (2003), Wu (2005), Kwon et al.
(2005), Kim and Lin (2005)).

The major advantages of the desirability
function approach are that it can incorporate a
decision maker (DM)’s preference very flexibly
and is easy to use in practice. However, the
acquisition of the DM’s preference may be quite
difficult because he/she should provide the
preference information assumptively on the
multiple conflicting responses. To overcome this
limitation, Jeong and Kim (2003, 2005) proposed
an interactive optimization method to incorporate
the DM’s preference effectively and efficiently in
the desirability function approach. Another
disadvantage of this approach is that it typically
ignores the correlation structure among
responses. Recently, Wu (2005) considered the
correlation structure by modeling the correlation
coefficients among responses.

2.4. Loss function approach

The loss function approach aims to find the
optimal parameter setting by minimizing the
expected loss function. Pignatiello (1993) first
proposed the use of a squared error loss function
in multiresponse optimization:

L(y(x)) = (y(x) —0)'C(y(x) - 90), )
where y(x) is a vector of response variables, 0 is
the target vector of responses, and C is the cost
matrix representing the relative importance of
each response. Then, the expected loss, which is
to be minimized, can be derived as:
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E[L(x)] = (E(y(x))-0)'C(E(y(x))-90)
+trace[CEy X@)],

where Zy(x) is the variance-covariance matrix of
the responses. Tsui (1999) extended the
Pignatiello’s model, which was developed only for
a nominal-the-best-type response, to the cases
for larger—the-better and smaller—the-better-—
type responses.

Vining (1998) proposed a modification to the
Pignatiello’s model by employing a vector of the
estimated responses §(x) in loss function, instead
of y(x). Consequently, the expected loss can be
expressed as:

E[L(x)] = (E[y(x)]-0)'C(E[y(x)]-0)
+trace[CEy ()],

where the Zyx) is the variance-covariance
matrix of the predicted responses. The Vining's
approach includes Khuri and Conlon (1981)’s
method using the generalized distance concept as
a special case.

Ko et al (2005) proposed an improvement
over the Pignatiello’s and Vining's models. They
employ $,.,(X) in the loss function, as opposed to
y(x) in the Pignatiello’s or $(x) in Vining’'s model.
Then, the expected loss is expressed as:

E[L]=(E[y(x)]-0)'C(E[y(x)]-0)
+tracel CLy (x)]+ trace[ CE (x)].

The expected loss in Equation (8) includes both
the variance of the responses and the variance of
the predicted responses. Thus, the Ko et al’s
model is a more comprehensive model and
includes both the Pignatiello’'s and Vining's
models as special cases.

The loss function approach originated from
the Taguchi’s robust design concept and, thus,
naturally considers the dispersion effects of
responses (i.e., Zyx) in (6) and (8)). It also
considers the correlation structure among
responses. Wu and Chyu (2004) considered both
correlation structure and dispersion effects
although they used a different model with (5)-(8).
Elsayed and Chen (1993), Ribeiro and Elsayed
(1995), and Lamghabbar et al (2004) did not
consider the correlation structure. Ames et al
(1997) did not consider both. The loss function
approach 1is statistically sound, but requires
several statistical assumptions as a compensation
for it.

(6)

(7

®)

2.5. Process capability approach

The process capability approach derives a
process capability index using the estimated
mean and standard deviation of a response. The
overall capability index is obtained by combining
the individual process capability indices. Then,

the optimal setting is determined by maximizing
the overall capability index.

Barton and Tsui (1991) proposed a
performance centering as a process capability
index:

PC, = min { ZAC e VA Al 163 } ©)
0;(x) 0,(x)

where PC; p.(x), and &;(x) are the performance
centering measure, the estimated mean, and the
estimated standard deviation of the th response
variable, respectively. Then, they suggested
maximizing the minimum of PC/s. Plante (1999)
extended the Barton and Tsui's approach by
developing several multicriteria models based on
the performance centering. Plante (2001)
proposed the wuse of two typical process
capability indices, Cpk and Cpm:

Cpk — mln{ /”\li(x)_Y[min Yimax — I&I(X)} (10)

36,;(x) 36;(x)
ymax _ Ymin

676 (%) + (i1(x) - 6,)°

where 6;is the target of the /th response variable.
As shown in (9) and (10), PC; and Cpk; are
fundamentally the same index. Then, he
suggested maximizing the (weighted) geometric
mean of Cpk/s (or Cpm/s). Ch'ng (2005)
proposed to maximize the weighted sum of
Cpmj's. Koksalan and Plante (2003) proposed an
interactive optimization method to incorporate
the DM’s preference in the process capability
approach.

The process capability approach has the
advantages that its indices, Cpk and Cpm, are
familiar to quality practitioners and it considers
the dispersion effects of responses because the
indices involve the variance term (i.e., &;(x) in
(9)-(11)). However, it does not consider the
correlation structure of responses.

) (11

Cpm; =

2.6. Probability-based approach

The probability—based approach assumes a
multivariate  probability  distribution of a
multivariate response Y. It first models the
distributional parameters in terms of input
variables and then finds the optimal setting which
maximizes the probability that all responses
simultaneously meet their specifications.

Chiao and Hamada (2001) assumed the
multivariate normal distribution with mean p = (z1,
o, *++, )" and variance-covariance matrix (th{e
di@gonal glements of which are the variances 012,
022,---, alf and the off-diagonal elements of which
are the covariances p;o;0; (1 <7< j< k), where p;
i1s the correlation between the ih and jth

- 732 -



2005 #5173 3ksta)/ v ARl Eote) A E T
200559 13 9~14 9, ZRojsta

responses). The joint probability density function,
AY; p, T, is given as:

(Y T = b - vew (qg)
(2”_)(1{/2)|2|1/2

The distributional parameters are modeled as a
function of x: #(x), &,x), and p;(x) . Then,
they suggested maximizing the proportion of
conformance, AYeS|x), where S is a set of
specifications for the responses. Peterson (2004)
and Mir6-Quesada et al (2004) estimated the
distributional parameters in the multivariate ¢
distribution using a Bayesian approach.

The major advantages of the probability—
based approach are that it naturally considers the
correlation structure by assuming a multivariate
probability distribution. However, it requires
several statistical assumptions and barely allows
the DM’s involvement.
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2.7. Other approaches

First, there are a few studies that are not
directly included in but closely related to the
desirability function approach. Lai and Chang
(2004) and Kumar and Goel (2002) proposed a
fuzzy modeling approach that is almost the same
with the desirability function approach. Peterson
(2000) proposed a combined approach of the
desirability  function and probability—based
approach.

Second, several variants of the loss function
approach have appeared in the literature. Riberiro
et al. (2000), Teeravaraprug and Cho (2002), and
Savage and Seshadri (2003) appended the cost-
of-loss concept to the loss function approach.
Tong and Su (1997), Su and Tong (1997), Antony
(2000), Yang and Chou (2005), Wang and Tong
(2005), and Liao (2005) considered the quality
losses in each experimental run as responses.
Chen (1997), Lu and Antony (2002), Maghsoodloo
and Chang (2001), Wu (2002), and Tong et al
(2004a, 2004b) considered the signal-to—noise
rations in each experimental run as responses.
Romano et al. (2004) proposed a loss function
method integrating both robust parameter design
and tolerance design. The Logothetis and Haigh
(1988), Artiles—Leon (1996), Tong et al (1997),
and Jayaram and Ibrahim (1997)’s works are also
related to the loss function approach.

As others, Reddy et al (1997) and Xu et al.
(2004) proposed a goal programming approach
and Kumar et al (2000) proposed the use of a
utility concept in the Taguchi method.

3. CLASSIFICATION OF EXISTING WORK

The existing work in multiresponse optimization,
reviewed in the previous section, is classified in
this section. The classification is performed in
two aspects: statistical properties and the DM’s
preference. Through the classification, limitations
of the existing work and thus insights on the new
direction in multiresponse optimization could be
identified. It should be noted that the papers in
the analytical approach in Section 2 are used in
the classification.

3.1. Classification based on statistical properties

The classification based on statistical
properties is performed via three points: (i)
correlation structure among responses, (i)
robustness of response, and (iii) quality of
response models.

Correlation structure among responses
The correlation structure means the strength
of relationships among responses. The first

column of Table 1 shows the results of
classification based on the consideration of the
correlation structure. All the work in the priority—
based and process capability approach does not
consider the correlation structure at all. Most of
work in the desirability function approach does
not consider the correlation structure, but a
recent paper attempts to tackle it. Wu (2005)
considered the  correlation  structure  as
mentioned in Subsection 2.3.

On the other hand, half the work in the loss
function approach considers the correlation
structure. All the work in the probability—based
approach considers the correlation structure.
This is Dbecause both loss function and
probability—based approach, in general, formulate
the problem with vectors and matrices and, thus,
naturally consider the variance-covariance
matrix of responses.

Robustness of response

The robustness refers to the low sensitivity
of the response to other factors, that is, the small
dispersion effect. Two types of sensitivity have
been addressed: robustness to uncontrollable
(noise) factors and robustness to parameter
fluctuation. The robustness to uncontrollable
factors means how large the variance of a
response is at specific setting of input variables.
On the other hand, the robustness to parameter
fluctuation means how large the variance of a
response is amplified by the parameter
fluctuation of input variables.

The second column of Table 1 shows the
results of classification based on the
consideration of the robustness of response. All
the work in the priority—based approach and the
majority in the desirability function and
probability—-based approach do not consider the
robustness. But, several recent papers in the
desirability function approach began to consider
the robustness, as the Taguchi’'s robust design
concept becomes more prevailing. Tong et al/
(2001), Ribardo and Allen (2003), Wu (2005), and
Kim and Lin (2005) considered only the
robustness to uncontrollable factors, while Kwon
(2005) considered both the robustness to
uncontrollable factors and the robustness to
parameter fluctuation.

On the other hand, all the work in the
process capability approach and the majority in
the loss function approach consider the
robustness. This is because, as mentioned in
Subsections 2.4 and 2.5, the loss function
approach originated from the Taguchi's robust
design concept and the process capability
approach uses the indices involving the estimated
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standard deviation of a response.

Quality of response models

The quality of response models refers to how
reliable the estimated response models are. Two
approaches have been proposed in this regard:
quality of description and quality of prediction.
The quality of description means a measure of
how well the estimated response models explain
data. The ]3, adjusted RZ, or mean squared error
can be employed as measures of the quality of
description. On the other hand, the quality of
prediction means how large the variance of a
model itself is at specific setting of input
variables.

The last column of Table 1 shows the results
of classification based on the consideration of the

quality of response models. Most of work in all
the approaches does not consider the quality of
response models. But, two papers each in the
desirability  function, loss function, and
probability—-based approach consider the quality
of response models. Kim and Lin (2000, 2005)
proposed a method to adjust the desirability
function shape by incorporating the levels of the
quality of description. Vining (1998) and Ko et a’.
(2005) considered the quality of prediction by
employing the variance—covariance matrix of the
predicted responses (i.e., Z;(x) in (7) and (8),
respectively). Peterson (2004) and Mir6-Quesada
et al (2004) also employed the variance-
covariance matrix of the predicted responses.

Table 1. The results of classification based on statistical properties

Approach

Existing paper

Correlation Robustness’ Quality™

Priority—based approach

Myers and Carter (1973)
Biles (1975)

Del Castillo (1996)

Desirability function approach

Derringer and Suich (1980)
Derringer (1994)

Del Castillo et a/. (1996)

Kim and Lin (2000) o’
Tong et al. (2001) O

Jeong and Kim (2003)

Ribardo and Allen (2003)

Wu (2005)

Kwon et al. (2005)

Jeong and Kim (2005)
Kim and Lin (2005) @) o’

Loss function approach

Pignatiello (1993) )

Process capability approach

Probability-based approach

Elsayed and Chen (1993)
Ribeiro and Elsayed (1995)
Ames et al. (1997)

Vining (1998)

Tsui (1999)

Lamghabbar et a/. (2004)
Wu and Chyu (2004)

Ko et al. (2005)

Barton and Tsui (1991)
Plante (1999)

Plante (2001)

Koksalan and Plante (2003)
Ch’'ng (2005)

Chiao and Hamada (2001)

O
(ONONONO) ® OO

ONONONONO)

O
O
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Peterson (2004)

O ©)

Miré-Quesada et al. (2004) O o

* In the Robustness column, the symbol ® represents that the corresponding paper considers
both the robustness to uncontrollable factors and the robustness to parameter fluctuation, while
the symbol O only the robustness to uncontrollable factors.

" In the Quality column, the symbol O’ represents that the corresponding paper considers only
the quality of description, while the symbol O only the quality of prediction.

Summary
An overall look on Table 1 indicates that the

robustness of response is most considered in the
existing work among the three properties, while
the quality of response models least considered.
The loss function and probability—based approach
incorporates the properties more than the others.
The ratios at which papers incorporate more than
two properties at once are 56% in the loss
function approach and 67% in the probability—
based approach, respectively. The process
capability approach considers only the
robustness of response. The desirability function
approach also, in general, considers only that
criterion. The priority—-based approach does not
consider all the properties at all. Up to now, the
number of papers considering all the properties is
nothing but one, that is, Ko et al (2005).
Fortunately, however, the recent papers intend to
incorporate the properties altogether. In the
future, a new work in multiresponse optimization
should fulfill the requirement that considers all
the properties.

3.2. Classification based on the DM’s preference

In general, the analytical approach requires
the DM’s preference on the tradeoffs among
multiple responses. The preference 1s
represented through preference parameters.
(The shape parameter ¢ in (3) is an example of
the preference parameter.) It can be extracted at
one of the following timings: before, during, and
after solving the problem. The classification
based on the DM’s preference is performed via
two points: (i) type of preference parameter and
(ii) timing of extracting the DM’s preference.

Type of preference parameter

The preference parameters in multiresponse
optimization generally include the target (of a
response), specifications (of a response), and
relative  weights (among responses). The
priority—based approach incorporates the target
and specifications. The desirability function
approach incorporates all these parameters. In
addition to those, it includes the shape as another
parameter. The loss function approach
incorporates the target and relative weights. The
process capability approach incorporates all the

parameters, but it does not include any other
parameter. The probability—-based approach
incorporates only the specifications.

The desirability function approach has the
most preference parameters, while the
probability—based approach has the least
parameters. This means that the desirability
function approach allows the DM to have flexible
options to provide his/her preference information
in various ways, while the probability-based
approach operates with the least options
extracting the DM’s preference.

Timing of extracting the DM's preference

Existing multiresponse optimization methods
can be viewed as the multiobjective optimization
(MOO) classification system. Generally, the MOO
literature assorts various optimization methods
into three categories by the timing of the DM’s
preference into a model: prior preference
articulation, progressive preference articulation,
posterior preference articulation methods (Hwang
et al (1979)). Prior preference articulation
methods require that all the preference of the DM
be extracted prior to solving the problem.
Progressive preference articulation methods —
often referred to as, interactive methods —
require that the DM input his/her preference
information into a model during the problem
solving process. Posterior preference articulation
methods do not need any substantial articulation
of the DM’s preference before or during the
problem solving process, but they necessitate it
when he/she selects the most satisfactory
solution among non—-dominated solutions.

Most of work in all the approaches is
categorized into prior preference articulation
methods in MOO (Park et al (2000), Park and
Kim (2005)). But, Jeong and Kim (2003, 2005)
and Koksalan and Plante (2003) proposed an
interactive method. Although not included in the
major approaches, Montgomery and Bettencourt
(1977), Mollaghasemi and Evans (1994), and
Boyle and Shin (1996) also proposed an
interactive method. As posterior preference
articulation methods, Ilhan et a/ (1992), Song et
al. (1995), Loy et al. (2000), and Istadi and Amin
(2005) exists.

Prior preference articulation methods have
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been criticized in that a considerable burden is
imposed on the DM in the preference extraction
process. Posterior preference  articulation
methods have the disadvantage that the number
of non-dominated solutions generated is often
too large and, thus, it is a difficult task to choose
the most satisfactory solution. In the case of
interactive methods, however, it is easy and
effective to extract the DM’s preference since
he/she has only to provide the information by a
local level in an interactive manner. In the future,
it is highly demanded to use and develop the
interactive method in multiresponse optimization.

4. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

The review and the classification of the existing
work In multiresponse optimization have been
proposed. The review and the classification aim
to provide useful information about multiresponse
optimization and to show the future directions,
respectively. This paper has described the

existing work under the category of the graphical,
priority—based, desirability function, loss function,

process capability, and probability—-based
approach. Then, it has been classified in two
aspects: statistical properties and the DM’s
preference.

In the future, a new study in multiresponse
optimization should be made to consider the three
statistical properties: correlation structure of
among responses, robustness of response, and
quality of response models. Also, it should be
developed to extract the DM’s preference
effectively and efficiently. An interactive method
is a very useful alternative with regard to the
preference extraction.

The  preference  extraction issue In
multiresponse optimization can be well resolved
through a combination of the desirability function
approach and the interactive method’s concept.
As mentioned in Subsection 3.2, the desirability
function approach has the most preference
parameters such as the target, specifications,
shape, and relative weights and, thus, allows the
DM to have flexible options to provide his/her
preference information through such parameters.
Therefore, an interactive method utilizing these
parameters integratively as an interaction
medium would be the best alternative.
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