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AbstractAbstractAbstractAbstract    

 

Based on a discrete-time version of the 

distributional Little’s law, we present a simple 

computational procedure to obtain the queue-

length distribution of the discrete-time GI/G/1 

queue from its waiting-time distribution that is 

available by various existing methods. We also 

discuss our numerical experience and address a 

couple of remarks on possible extensions of the 

procedure. 

 

1. Introduction1. Introduction1. Introduction1. Introduction    

 

Discrete-time queueing models have been 

given a growing attention due to their applications 

to a variety of slotted digital communication 

systems and other related areas. In discrete-time 

queues, the time axis is segmented into a 

sequence of equal intervals, called slots, and 

arrivals and departures of customers are assumed 

to take place at slot boundaries. In this paper, we 

consider the discrete-time single-server  

 

 

 

 

 

 

 

 

 

 

 

GI/G/1 queue, where both the interarrival and 

service times are sequences of independent and 

identically distributed (i.i.d.) general discrete 

random variables that are independent of each 

other.  

While the continuous-time GI/G/1 queue is 

difficult to analyze both mathematically as well as 

numerically, it is interesting to note that its 

discrete-time counterpart is much easier to do so. 

In this paper, we present a simple computational 

procedure to obtain the stationary queue-length 

distribution from its stationary waiting-time 

distribution by means of a discrete-time version 

of the so-called distributional Little’s law (its 

continuous-time version is established by Haji and 

N e w e l l  1 9 7 1 ) .  

Recent advances in the analysis of the 

discrete-time GI/G/1 queue-length distribution 

include the following. Haβlinger (1995) shows that 

the stationary queue-length distributions of the 

finite- as well as infinite-capacity discrete-time 

GI/G/1 queue can be represented in terms of the 

so-called characteristic zeros. Yang and Chaudhry 

(1996) use the matrix-analytic method (MAM) to 

analyze the arrival- and departure-time embedded 

Markov chains arising in this queue, which turn 

out to be of the GI/M/1 and M/G/1 types, 

respectively. Alfa and Li (2001) show that this 

queue can be easily set up as a quasi-birth-death 
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process and use MAM to obtain the stationary 

distributions of the random variables of interest, 

such as the queue length, the waiting time, and the 

length of a busy period. Alfa (2003) also extends 

this result to the batch-arrival GI
X
/G/1 queue.  

In this paper, we establish in Section 2 a 

discrete-time version of the distributional Little’s 

law that relates the stationary queue-length 

distribution to the stationary waiting-time 

distribution. Using this relation, we show in 

Section 3 that one can obtain the queue-length 

distribution of the discrete-time GI/G/1 queue 

from its waiting-time distribution that is available 

by various existing methods. Finally, we discuss 

our numerical experience and address a couple of 

remarks on possible extensions of the 

computational procedure. 

 

2. Distributional Little2. Distributional Little2. Distributional Little2. Distributional Little’’’’s Laws Laws Laws Law    

 

In this section, we establish a discrete-time 

version of the so-called distributional Little’s law 

that relates the stationary number of customers in 

system at an arbitrary time (that falls somewhere 

in the middle of a slot with probability 1) to the 

stationary number of slots a customer spends in 

system.  

Although the distributional Little’s law applies 

to a broad class of queueing system, we refine 

ourselves in this paper to a stationary discrete-

time FIFO (First In First Out) GI/G/1 queue, where 

n
A  is the interarrival time between customers 

n
C  

and 1nC + , 
n
S  is the service time of 

n
C , and { }nA  

and { }nS  are independent sequences of i.i.d. 

general discrete positive random variables. Let 

interarrival and service times be denoted by 

generic random variables A  and S  with their 

respective probability generating functions (PGFs) 

( )A z  and ( )S z . We assume ( ) ( ) 1E S E Aρ = <  to 

ensure stability. 

Consider the number of elapsed slots since 

the last arrival, which is denoted by 
E
A  with its 

PGF ( ) ( )( ) 1 ( ) ( )(1 )
E
A z A z E A z= − − . Also consider a 

discrete-time equilibrium renewal arrival process, 

where the number of slots up to the first renewal 

arrival is ‘ 1
E
A + .’ Then, to the discrete-time 

GI/G/1 queue, we apply the same arguments as is 

presented to establish the continuous-time 

distributional Little’s law (Haji and Newell 1971). 

As a result, we have 

( ) ( ( ) )P N n P W n= = Λ = , 0,1,2,n = L , (1) 

where N  is the stationary queue length, i.e., the 

number of customers in system (by system, we 

mean queue plus server), W  is the stationary 

waiting time, i.e., the number of slots a customer 

spends in system, and ( )iΛ  is the number of 

renewal arrivals during (0, ]i , 1,2,i = L , with  

(0) 0Λ = , in the discrete-time equilibrium renewal 

arrival process that is independent of W .  

    

3. Computational Procedure3. Computational Procedure3. Computational Procedure3. Computational Procedure    

 

Making use of relation (1), we present in this 

section a computational procedure to get the 

queue-length distribution of the discrete-time 

GI/G/1 queue from its waiting-time distribution. 

Since the distribution of W  is easily available, 

e.g., from the iterative method based on the 

Wiener-Hopf factorization (Grassmann and Jain 

1989), the solution presented in terms of zeros 
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outside the unit circle (Chaudhry 1993), or MAM 

(Alfa and Li 2001), the calculation of the queue-

length probability through (1) is now reduced to 

counting the number of renewal arrivals during 

(0, ]i  for a given W i= :  

0

( ) ( ( ) ) ( )

i

P N n P i n P W i

∞

=

= = Λ = =∑ .  (2)    

To do this, let ( )
n
P z  be the generating function 

(GF) of ( ( ) )P i nΛ =  for 1,2,3,i = L ; i.e., 

1 2( ) ( (1) ) ( (2) )
n
P z P n z P n z= Λ = + Λ = +L . Then it is 

given by 

( )1( ) ( ) 1 ( )
( )

1

n

E

n

zA z A z A z
P z

z

− −
=

−
, 1, 2,n = L , (3) 

( )
0

1 ( )
( )

1

E
z A z

P z
z

−
=

−
.   (4) 

As illustrated by Kim and Chaudhry (2005), for 

any given 0,1,2,n = L , (3) and (4) are easily 

expanded into power series to give all the values 

of ( ( ) )P i nΛ =  of interest with 1,2,3,i = L . 

Substituting these values into (2), one can 

calculate a complete queue-length distribution.  

  

4.4.4.4. Numerical Experience and Numerical Experience and Numerical Experience and Numerical Experience and    Some Some Some Some RemarksRemarksRemarksRemarks    

 

In this section, we discuss our numerical 

experience and address a couple of remarks on 

possible extensions of the procedure. 

We tested our computational procedure using 

the same GI/G/1 queue as is considered by Alfa 

(2003) and confirmed that our results nicely agree 

with his. No problems have been encountered in 

applying the procedure to a variety of the GI/G/1 

queues. (Sample numerical results are 

demonstrated at the talk.) 

Finally, we remark that the procedure 

presented here can also be applied to the other 

discrete-time queues in which the discrete-time 

distributional Little’s law is still valid. Examples 

include the GI/G/1 queue with multiple vacations 

and the multi-server GI/D/c queue with 

deterministic service times, in which it can be 

shown that relation (1) still holds. Along the same 

lines as presented in this paper, their stationary 

queue-length distributions can be obtained from 

their respective waiting-time distributions that 

seem to be easily achievable.  
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