(05-1-102)

Changes of resistance for *Erwinia carotovora* on trantsgenic potatos expressing cu/zn superoxide dismutase genes of Lily

Kim Mi-Sun, Kang Won-Jin, Kim Hyun-Soon, Kim Yoon-Sik, Youm Jung-Won, Kim Jae-Hyun, Kim Han-Na, Jeon Jae-Heung*

Plant Cell Biotechnology Laboratory, Korea Reasearch Institute of Biotechnology (KRIBB), Taejon, 305-333, Korea

Objectives

This study was focused on the change of the resistance for *E. carotovora* from transgenic potato plants, expressing Cu/Zn gene with sense and antisense orientation.

Materials and Methods

1. Material

Plant Solanum tuberosum. L. cv. Desiree (Transgenic potatoes : Cu/Zn SOD with sense and antisense orientation)

Pathogen Strains Erwinia carotovora subsp carotovara strain SCC1

2. Methods:

The plants were infected by cultured E. carotovora subsp carotovara SCC1 culture ($\sim 10^4$ to 10^6 cfu/plant) with a toothpick. The plants were infected at 200–250 umol m-2s-1 photon flux density with 48hrs light period. O₂ was measured by staining of Nitro blue tetrazolium(NBT).

Accumulation of H₂O₂ was detected by staining potato leaves with DAB (Sigma-Aldrich) and Luminol test.

Results and Discussion

The leaves of SS, SA and wild-type plants were stained with 3,3'-diaminobenzidine (DAB) to detect H_2O_2 accumulation. SS plants showed strong accumulation of H_2O_2 4h after treatment. However, accumulation of O_2 in SS plants showed very low.

SS, SA and wild-type plants were treated with *E. carotovara*, MeJA and SA. Local samples were collected 0, 0.5, 1.5, and 3h after treatments. The samples were analyzed in northern hybridization with gene-specific RNA probes of PR2, PR3, and GST. The genes were strongly induced in response to treatment with SA short of PR2 gene.

The leaves of SS4, SA1 and Wild-type plants were inoculated by infiltration with E. $carotovora(10^6 \text{ cfu/plant})$. SS4 plants are resistant to E. carotovora infection in normal light. We studied the effect of various scavengers and inhibitors known to eliminate O_2 and H_2O_2 . The results indicated that the plants treated with $CuCl_2$ 100uM are resistant for E. corotovora.

^{*} Corresponding author: Jeon Jae-Heung, TEL: 042-860-4492, E-mail: jeonjh@kribb.re.kr