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A Simple Beam Model for Thin-Walled Composite Blades with Closed, Two-
Cell Sections
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ABSTRACT

A simple beam model based on a mixed method is proposed for the analysis of thin-walled composite
blades with a two-cell airfoil section. A semi-complementary energy functional is used to obtain the beam
force-displacement relations. The theory accounts for the effects of elastic couplings, shell wall thickness,
warping, and warping restraint. All the kinematic relations as well as the cross-section stiffnesses are
evaluated in a closed-form through the current beam formulation. The theory has been applied to two-cell
composite blades with extension-torsion couplings and fairly good correlation has been observed in

comparison with a detailed analysis and other literature.

1. Introduction

In general, the composite rotor blades are built-up
structures made of different materials for the skin and
spar and are normally of closed single- or multi-celled
cross-sections and are thin-walled except near the root
where they become thick-walled. In the analysis of
composite blades, there is a need to properly model the
local behavior of the shell wall as a reaction to the global
deformation of the blade.

During last couple of decades, a few selective research
activities have been devoted to model and analyze thin-
walled composite beams and blades with multi-cell
sections. Mansfield [1], Chandra and Chopra [2], Volovoi
and Hodges [3], and Jung and Park [4] are the
representative ones. Most approaches found in the
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literature have been formulated through either a
displacement [2] or a force method [1]. The former is
based on suitable approximations to the displacement
field of the shell wall of the section. The assumed
displacement field is used to compute the strain energy,
and the beam stiffness relations are obtained by
introducing relevant energy principles. This method is
quite straightforward and easy to apply but there is no
systematic method to determine the distribution of
warpings. In the force method, also called the flexibility
formulation, the assumed direct stress field in the shell
wall is used to obtain the distribution of the shear stress
and the related warpings from the equilibrium equations
of the shell wall. The flexibility method provides a
systematic method to determine the warping functions.
Recently, the mixed method that combines both the
displacement and force methods by using a variational-
asymptotic framework [3] or the Reissner’s functional
[4] has been developed and proved accurate enough for
the analysis of elastically-coupled, thin-walled composite
blades. However, in spite of many advantages inherent in

=187 =



the mixed approach, the formulation process is rather
complex and generally not easy to follow with.

In the present work, a simple and concise approach
based on a mixed method is proposed toward modeling
and analyzing the thin-walled composite blades with
two-cell sections. A closed-form expression is obtained
for the cross-section stiffness coefficients as well as the
distribution of shear across the section. The theory is
validated by comparison of the static response of two-
celled composite blades with experimental results found
in the literature and also with those of a detailed finite
element analysis using the MSC/NASTRAN.

2. Formulation

Fig. 1 shows the geometry and coordinate system of
a composite blade with two-cell section. Two different
systems of coordinate axes are used: an orthogonal
Cartesian coordinate system (x, y, z) for the blade and a
curvilinear coordinate system (x, s, n) for the shell wall
of the section. The global deformations of the beam are
(U, V, W) along the x, y and z axes, and ¢ is the elastic
twist about the x-axis. The local shell deformations are (u,
v, v,) along the x, s and » directions, respectively.
Allowing the transverse shear deformations, the local
deformations at an arbitrary point on the shell wall can
be expressed as

u=u’+ny,

_.0
V=V, tny (@)
v, =V)

where the superscript 0 denotes the variable defined at
the mid-plane of the shell wall and w,,y, represent

rotations about the s- and x- axes, respectively. The shell
mid-plane displacements can be obtained in terms of the
beam displacements and rotations as:

{4

Vp = Vz,s = Wy: = q¢

n

W= Vy +Wz +ré
0

(@)

where r and ¢ are the coordinates of an arbitrary point on
the shell wall in the (n, s) coordinate system. Assuming
small strains, the strain-displacement relation of the shell
wall can be obtained as:

bu=U, +2f, + VP~ 09
rxs =},xyy,s +ynz.s =ug +V.xy.-v +u/.xz.5 +r¢.x

3)

where %, and y. represent the transverse shear strains of
the blade in the horizontal and vertical directions,
respectively, and @ is the sectorial area of the section.
In Eq. (3), the cross-section rotations of the blade, 3, and
[, are defined as:

p_v =Y u’,r
il 4)

Assuming the hoop stress flow N, is negligibly
small, the constitutive relations for the shell wall of the
section is written as

{Nn} o [AI'I AI'G Exx
Nx: Al’é Aéé rxs (5)
with
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where A; are the laminate stiffness coefficients for the
extension in the classical lamination theory. It is
convenient to write Eq. (5) in a semi-inverted form as:

N - Ans Auy Erx
yXS N - A"r Aﬂ er (6)

where
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In order to assess the semi-inverted constitutive relations
into the beam formulation, a modified form of Reissner’s
semi-complimentary energy functional @ is introduced:

1
(DR =5[Nn£n _71:N:s] (7)

The stiffness matrix relating beam forces with beam
displacements is obtained by using the variational
statement of the Reissner functional which is given by

!
51§ (@ +7,N, ) dsdx=0 ®)

0

where / is the length of the blade. The parenthesis of Eq.
(8) represents the strain energy density of the blade. The
unknown shear flow N,, can be determined from the
continuity condition of the shell wall which is given as:

$u'ds=0 )]

By using Eqs. (3) and (6), the shear strain is given by the
relation,

Ve = "A,,rfn h A”Nxs =llf_: +V,xy,s + u,,x:,s +r¢_; (]0)
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Integrating Eq. (10) from 0 to s and invoking the
continuity condition for each wall of the section defined
as in Eq. (9), yields the following set of equations:

(&, +ay)m —agny =249, + ICI +C3 A, 8.ds

an

—ayn + (@ +a)ny =24,¢ . + L-z +Cs A, Ends

where n, and n, are unknown shear flows for each
cell of the section, 4; and A, are the enclosed areas of
each cell, and C; (i = 1, 2, 3) are the contour lengths of
the cell segment (see Fig. 2). The shear flow components
corresponding to each of the three curves C,, C,, and C;
are n,, n,,and n,—n,, respectively. The o; (i = 1, 2,
3) appeared in Eq. (11) are defined as

@ =], A,ds; ay=| A,ds; ay=[, A,ds (12)

By substituting the axial strain Eq. (3) into Eq. (11), the
unknown shear flows are obtained as

{n}=[rlas} (13)

where

{n}T o & Jus & }
Pl I Fa S e

fa S Ja Jo Ju (14)
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By inserting Egs. (3) and (13) into Eq. (8), one can
obtain the following set of beam forces-displacements
relations,

{Fb}=|_N M, M. T ijrz[Kbb]{qb} (15)

where N is the axial force, M, and M. are the bending
moments about y and z directions, respectively, T is the
twisting moment and M,, is the Vlasov bi-moment. The
cross-section stiffness matrix [Kj,] relates the cross-
section force and moment resultants with beam
displacements at an Euler-Bernoulli level of
approximation for extension and bending and Vlasov
level for torsion.

3. Results and Discussion

Numerical simulations are carried out for coupled
composite blades with two-cell airfoil section. The blade
is clamped at one end and warping restrained at both
ends. The geometry and the material properties of the
blade are given in Table 1. Blades with three different ply
layups representing extension-torsion couplings are
examined. Table 2 shows the details of the layup used in

the study.

Fig. 3 shows the comparison results for the tip bending
slope and the induced tip twist of the three different
blades under a unit tip shear load. The present results are
compared with the experimental test data as well as the
theoretical results obtained by Chandra and Chopra [2].
It is noted that a displacement-based approach is adopted
in Ref. 2 in order to describe the theory. For a
comparison purpose, a detailed finite element analysis
results obtained using the MSC/NASTRAN is also
included in Fig. 3. It is seen that, the predictions of the
present method are in good agreement with other results
and show better correlation with experimental results
than those with Chandra and Chopra [2] in spite of the
simple membrane shell model for the present formulation.
The structural responses obtained by the present method
are within 4.5% of the experimental results.

Fig. 4 presents the tip twist responses of the extension-
torsion coupled blades under a unit tip torque load. Good
correlation between the present theory and other
predictions is also obtained.

4. Conclusion

In the present work, a closed-form analysis for
coupled composite blades with multiple cell sections was
performed. The analysis model included the effects of
elastic couplings, shell wall thickness, torsion warping
and constrained warping. The beam force-displacement
relations of the blade were obtained by using the
Reissner’s semi-complementary energy functional. The
resulting (5x5) stiffness matrix idealized the blade at an
Euler-Bernoulli level of approximation for extension and
bending and Vlasov for torsion. The theory was
correlated with experimental test data and detailed finite
element results for coupled composite blades with a two-
cell airfoil section. Good correlation of responses with
experimental results was obtained for the cases
considered in this study. The error was less than 4.5% for
extension-torsion coupled composite blades.

References

(1) Mansfield, E. H., "The Stiffness of a Two-Cell
Anisotropic Tube," Aeronautical Quarterly, May 1981.

(2) Chandra, R., and Chopra, 1., "Structural Behavior of
Two-Cell Composite Rotor Blades with Elastic
Couplings," AIAA Journal, Vol. 30, No. 12, Dec. 1992,
pp- 2914-2921.

(3) Volovoi, V. V., and Hodges, D. H., "Single- and
Multicelled Composite Thin-Walled Beams," AI4A
Journal, Vol. 40, No. 5, 2002, pp. 960-965.

(4) Jung, S. N., and Park, 1. J., "Structural Behavior of
Thin- and Thick-Walled Composite Blades with
Multicell Sections," A/4A Journal, Vol. 43, No. 3,
2005, pp. 572-581.

(5) Gjelsvik, A., The Theory of Thin Walled Bars, John
Wiley & Sons, Inc., 1981.

— 189 —



Fig. 2 Definition of a two-cell section.
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Fig. 4 Comparison of tip twist angles for two-celled
composte blades.
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Table 1 Geometry and material properties of two-
celled composite blades.

Properties Values
E; 131 GPa (19 x 10° psi)
E; 9.3 GPa (1.35 x 10° psi)
G 5.86 GPa (0.85 x 10° psi)
Viz 0.40
Ply thickness 0.127 mm (0.005 in)
Airfoil NACA 0012
Length 641.4 mm (25.25 in)
Chord 76.2 mm (3 in)
Airfoil thickness 9.144 mm (0.36 in)

Table 2 Layup cases of extension-torsion coupled

Fig. 3 Comparison of bending slopes for two-celled

composite blades.

blades.

Cases Spar Web Skin
Blade 1 [0/15], [0/15], [15/-15]
Blade 2 [0/30], [0/30], [30/-30]
Blade 3 [0/45], [0/45], [45/-45]
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