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Abstract - In this paper, a noisy passive telemetry sensor system
using Unscented Kalman Filter (UKF) is proposed. To overcome these
trouble problems such as a power limitation and a estimation complexity
that the general passive telemetry sensor system including IC chip has,
the principle of inductive coupling was applied to the modelling of a
passive telemetry sensor system (PTSS) and its noisy capacitive
parameter was estimated by the UKF algorithm. Specially, to show the
effective tracking performance of the UKF, we compared with the
tracking performance of Recursive Least Square Estimation (RLSE)
using linearization

1. INTRODUCTION

The earliest stimulus for the development of estimation theory was
apparently provided by astronomical studies. To solve the this problem
concerning  the revolution of heavenly bodies, the method of least
squares (LSM) was invented by Karl Friedrich Gauss. After then, this
method has been based on most of the estimation methods like
"Maximum Likelihood Method”, "Minimum Mean-Square Estimation” and
"Kalman Filter’[1]. In this article we focus mainly on passive
telemetry  sensor system(PTSS) which is nonlinear system[2].
Generally, this sensor system is modelled by inductive coupling
theory and vyields nonlinear model relating to estimator 02

varying dependent on humidity, pressure, etc. Unscented Kalman
Filter(UKF)[3] is presented for estimating noisy capacitive
parameter Cy of the PTSS. We demonstrate the applicability of
the UKF to PTSS. The performance of the UKF algorithm in
nonlinear system PTSS is evaluated and compared with the
RLSE.

2. PASSIVE TELEMETRY SENSOR SYSTEM

The proposed PTSS is divided into two parts; transceiver and
sensor part as following Fig. 1[2].

<Fig. 1> The Principle of PTSS

In Fig.l, transceiver part and sensor part are coupled
inductively with mutual inductance M and impedance of sensor
part Zygnsor is included in reflected impedance Zp
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where, W means an angular velocity['l‘ad/ seC]A The transfer
ratio between the RF input voltage V;,and the measured
voltage V,,; across R, is equal to Eq. (2). Where, C; is

unknown.
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3. UNSCENTED KALMAN FILTER FOR PARAMETER ES
TIMATION

The unscented transformation is founded on the intuition that it
is easier to approximate a Gaussian distribution than it is to
approximate an arbitrary nonlinear function or transformation[3).
Basic approach is presented in Fig 2.

<Fig. 2> The Principle of the Unscented
Random variable T has n—by—1 dimension and if sample mean
and sample covariance are T and P_ ., a nonlinear function is mappin
g to each point to transformed points 5 and Pyy. A recursive loop of
UKF for parameter estimation is as following Fig. 3.
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<Fig. 3> A recursive loop of UKF for Parameter Estimation
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4, COMPUTER SIMULATION

In this section, the capacitive parameter estimation for the
proposed system are performed to prove the availability of UKF
algonithm for proposed PTSS. Table 1 shows the values of each
component used in the proposed telemetry sensor system like
Fig. L
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<Table 1> Passive Teiemetry Sensor System Parameters

Parameter Value Parameter Value
L, 700[# Initial value of C; 500[pF]
C 80(pF) M 3.2(H)
L s0[# Rouree 30[§21
160,180,200
C; PF] R; . 10[0 ]
300[kHz] ~ 1.
Ri 5[9] span (kHz) - 1.2MH
z]
Distance between two coi
A 1 2.5[cm)
Is
R’ 0 Re le-8
When measurement noise is not considered in this

system(process noise R™ = 0, measurement noise R°®= 0), Fig.
4(a) is shown as the convergence pattern for estimator 02 and
Fig. 4(b),(c) are shown as the gain and the phase of the sensor
system for each 02 according to the RLSE system using
linearization.
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<Fig. 4> Convergence Patterns, Gain and Phase Diagrams
Observed gain (= Vout/Vin) data with noise whose covariance

. -8 . . s
RtlS 10 applies to estimate capacitive parameter 2 as

shown Fig. 5. Specially, this data is collected in a range of the
reso

nance of the PTSS to include the nonlinearity
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<Fig. 5> Noisy gain (=Vout/Vin) data used in estimation

In case of noisy gain data (=V,,/V;,), the predicted
capacitive parameter are plotted to compare the performance
between the UKF and the RLSE using linearization in Fig. 6.
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<Fig. 6> Parameter Estimation for the PTSS
Problem: (a) with RLSE; (b)with the UKF

Total 90 iterations have been done with same data obtained from
noisy PTSS and in above figure ,straight solid line means desired
capacitive value
ta

rget. In order to show the performance of this filter, statistic par
ameters like covariance and errors are in Fig. 7.

2 and dash line presents the tracking to the
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<Fig. 7> Estimated errors and estimatedcovariances calculated
by an UKF: a)lnnovation covariance; (b)Cross correlation matrix;
(c) Kalman gain; (d)Innovation; (e) Prediction covariance (f)Error
between estimator and real (=180[pFl)

In the state-space approach to parameter estimation, absolute con

vergence is achieved when the parameter covariance PcZ goes to
zero (this also forces the Kalman gain to zero)(4] and same res
ults are confirmed clearly in Fig. 7(c), (e), (f).

5. CONCLUSION

The UKF was applied to the parameter estimation of the
proposed Passive Telemetry Sensor System, and its performance
was compared with RLSE algorithm. In regard of convergence,
the tracking trace using UKF has already approached the
desired value in 40th iteration, whereas the tracking one using
RLSE has a large error after finished the estimation. In terms of
the convergence, the UKF is superior to RLSE, which uses
linearization of the nonlinear model in noisy environment. In a
view of estimation ability compared with the RLSE, the UKF
algorithm is able to achieve rapid convergence property and more
accurate estimation for noisy PTSS.
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