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Direct Search Methods for Nonlinear Optimization Problem used ART Theory

A
=T5,

FE0sW e

Py

. 3R0ED

o >

~ Son Jun Hyeok, Seo Bo Hyeok
Kyungpook Nat. Univ.

Abstract - In this paper, the search is conducted along each of
the coordinate directions for finding the minimum. If ¢ ; is the

unit vector along the coordinate direction i, we determine the
value a, minimizing Afa)= Ax+ae ), where a is a real number.
A move is made to the new point x+a ,; at the end of the

search along the direction ;. In an » dimensional problem, we
define the search along all the directions as one stage. The
function value at the end of the stage is compared to the value
at the beginning of the stage in establishing the convergence.
The gradient appears to be zero at point. We can safeguard this
by introducing an acceleration step of one additional step along
the pattern direction developed by moves along the coordinate
directions.

1. introduction

Multi-variable minimization can be approached using gradient
and Hessian information, or using the function evaluations only.
We have discussed the gradient or derivative based methods in
earlier chapters. We present here several algorithms that do not
involve derivatives. We refer to these methods as direct methods.
These methods are referred to in the literature as zero-order
methods or minimization methods without derivatives. Direct
methods are generally robust. Direct methods lend themselves to
be valuable tools when gradient information is not readily
available or when the evaluation of the gradient is cumbersome
and prone to errors. The concepts of simulated annealing and
genetic algorithms are also discussed. All these algorithms are
implemented in computer programs.

2. ART2 Neurai Network

ART2 is principally a two-layer architecture, each input

layeractually consists of six inter-PEs Working in synchrony as
shown in Fig. 1. These inter-PEs normalize the input and stored
patterns to allow for equitable comparison. The function of each
inter-PE in the ithF is as follows:! a ; holds the analog input
value for the jth component of the kt#f input pattern (a‘,’-), b;
holds a normalized representation of g /s value, ¢, holds a
normalized LTM/input pattern comparison, ¢ ; holds the analog
LTM pattern readout/input pattern comparison, e, holds the
normalized LTM pattern readout, and g ; holds the analog LTM
pattern readout. The links between g, and ¢, and 4; and ¢,
and g, and p; are transparent and unit valued. The link from
e; to d, caries a linearly regulated sigmoid threshold signal
(Bd(e;)), the link from b, to 4, carries a sigmoid-threshold
signal, the link from ¢, to g, carries the value of ¢, and the
link from ¢, to g carries a linearly regulated ¢ . Signal.

+

<Fig. 1> ART Model

Fig. 1 is topology of the analog adaptive resonance theory
(ART2) ANS, an unsupervised learning feedback recall ANS.
There are inter-layer connections between the F , and F ,PEs
that store analog spatial patterns. The F ;PEs accept input
patterns from the environment and the F yPEs each represent a
pattern class.

During operation, the F gPEs employ an invisible on-center/
off-surround competition that is used to choose the proper class
for the presented input. These lateral interactions are shown in
the figure as shaded self-exciting/neighbor-inhibiting connections
to emphasize this point. This is a continuous time ANS that
classifies analog patterns. To keep the presentation uncluttered,
all connections are not shown-there is actually a connection from
each F ,PE each F ,PE and vice versa, a shaded negative
lateral connection from each F (PE every other F ,PE, and a
shaded positive recurrent connection from every F ,PE to

itself{1-3].

<Fig. 2> ART Unit Model

Fig. 2 is an expanded view of the F .PE showing the six

inter-PEs that are used for normalization of the analog patterns
stored in LTM(the connections between F; and F, and the

input patterns. The shaded connections inherently carry
information concerning the other PEs of the same type
(information necessary for the normaliztion process to occur).
Pattern normalization allows an equitable comparison to be made
between the stored and input pattern.

Like ART1, ART2 is a field feedback paradigm: F GPE receive
signals from both the external inputs (A ") and the top-down
Vi connections, and F ,PEs receive signals from bottom-up
(Wi,.) connections. The encoding procedure is outlined as
follows:

1. Present an input pattern A ,=(a*,-, a*)
F oPEs.

2. Inside each F  PE the analog input pattern is normalized
and fed through the g -4 —d, —»c—~g; inter-PE path, and
sends the resultant signal through the F, to F, LTM
connections.

3. Each F, competes with the others using Shunting

Grossberg interactions until only one F ,PE remains active.

to the

4. The winning F ,PE sends a top-down signal through its
LTM connections, V i back to F.

5. The top-down signal is sent through the g —e —~d —c;
inter-PE path resulting in a possibly new ¢ ; signal.

6. The combined normalized top-down LTM/bottom-up input
signal at ¢, is compared with the top-down stored signal g,
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7. If the difference between these two activations ¢, and g,

exceeds a value deter mined by the vigilance parameter then the
winning F wPE does not represent the proper class for A ; and

it is removed from the set of allowable F , winners. Control

branches at this point in one of two directions:
a. If there are still F  PEs remaining in the set of allowable

winners, go to step 2.
b. If there are no remaining F ¢ PEs in the set of allowable

winners, recruit an uncommitted F ,PE and encode the

normalized input onto this's connections.
8. I the difference between the two activations meets the
criterion established by the vigilance parameter, then the F wPE

is determined to be the proper class for the for the input pattern
A, and the input pattern is merged onto the weights with the

stored pattern. We will call this match between the input and
stored patterns resonation, and we shall call the length of time
that the match occurs the resonation period[4-6).

3. Case Study

3.1 Problem Model
Define 20,2,,25,23,% 4 X0:X1,X9,X3,% 4
determine y ; by RHR. This robot-arm system has four motor.

determine

R,

Flg.w4” ﬁobot—urm system design sketch

3.2 Modeling
Each transformation matrix each column into gives and it must
be complex calculation.

C, =S 00 G -5 00 C -5 00 100 f

5 C oo 0 0 10 s ool ,lo100
i - - Ti=

0 0 1n $ G 00 0 010 0010

0 0 01 00 01 0 0 01 0001

Therefore the overall transformation becomes
GGy -GSy 5 eGG+f0C,
T: =T:7;’T;7;‘ - SCs =85Sy -G e8C,+/5C,

Sy Cu O h+eS,+f5,
0 0 0 1
3.3 Result
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Fig. 7 ART2 neural network
4. Conclusion

Table 1 is comparison error rate and overshoot of each method.

Table 1
Method|  powprr's | NELDER & | 4pqo Neural
METHOD MEAD Network
Content METHOD
Qvershoot 1.1623 0.2482 0.0023
Error rate 0.321 0.736 0.138

In this paper, we described a neural network architecture that
can solve classical robot-arm system problem with a massively
parallel algorithm. The algorithm is based on the logarithmic
barrier function approach to robot-arm system problem. In other
to solve the basic dynamics of these network, we simulated
robot-arm system problem using the differential-equation
approach. Thus far, we have simulated the effects of limited
numerical precision of analogue devices and of random noise that
may be described. As you see the Fig. 5-7 and Table 1 about
case study, this paper demonstrated robot-arm system problem
used ART Neural Network.
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