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Abstract - In this paper, the Takagi-Sugeno (TS) fuzzy state
estimation scheme, which is suggested for a steady state
estimator using standard Kalman filter theory with uncertainties.
In that case, the steady state with uncertain can be represented
by the TS fuzzy model structure, which is further rearranged to
give a set of uncertain linear model using standard Kalman filter
theory. And then the unknown uncertainty is regarded as an
additive process noise. To optimize fuzzy system, we utilize the
genetic algorithm. The steady state solutions can be found for
proposed linear model then the linear combination is used to
derive a global model. The proposed state estimator is
demonstrated on a truck-trailer.

1. Introduction

The design of a Kalman filter relies on having an exact dynamic

model of the system under consideration in order to provide optimal
performance when the design contains relatively small modeling errors
[1]. However, most dynamical systems in the world have severe
nonliterary. In order to design of optimal filters, many recent works have
dealt with the problem of robust filter design for all admissible
uncertainties by minimizing the upper bound on the variance of
estimation error. The uncertainty is parameterized in terms of a
norm-bounded parameter matrix [2, 3]. Conventionally, the extended
Kalman filter has been proposed for state estimation by using a
linearization of the nonlinear systems around the present estimate
through an application of linear filter theory [4]. However, few works
have studied the estimation problem for nonlinear uncertain systems.
In this paper, the uncertain nonlinear system is represented by T-S
fuzzy model structure, which is further rearranged to give a set of
uncertain linear systems. The unknown uncertainty is regarded as an
additive process noise and then the time-varying variance of the
overall process noise is calculated. This model is designed for a local
linear state space model using standard Kalman filter theory. Finally, the
proposed state estimator is demonstrate on a trcuk-trailer.

2. Fuzzy State Estimation

2.1 Preliminaries and problem formulation
Nonlinear systems can be approximateql as locally linear systems in
much the same way that nonlinear functions can be approximated as
piecewise linear functions. Consider a nonlinear dynamical system of the
form.
z(k+1) = flz(k),u(k)) 1)
This uncertain nonlinear system can be approximated or represented by
the T-S fuzzy model, which is composed of a set of fuzzy inference
rules. Nonlinear dynamical system with uncertainties can be represented
by fuzzy linear models of the form.
IF z(k)is F}; and ... and z, (k) is Fy (2)
THEN z(k+1) = (4; + AA)z (k) + Bu(k) + Gu(k)
y(k) = Gz(k) +v(k), i=1,2,3,....L
where Fj; is the fuzzy set, L is the number of fuzzy rules, y(k) is
measured output, 4; and B, are known constant matrices, the process
noise w(k) is white with PSD &, the measurement noise v(k) is white
with PSD S,, and the process noise and measurement noise are
uncorrelated, A4, (k)AAT(k) <1 is uncertain time-varying matrix, and
2,(k), "z, (k) are premise variables.
Now we define L discrete time signals z{(k) and y(k). The final output
of the fuzzy system is inferred as follows:

2(h+1)= f;l 1, ED (4, + A4)z () + Bulk)+ Gu(®)]  (3)

y(k) = gui(z(k))[qz(k)+v(k)]
where
L
A k)= .2_]1#.' (2(k)) 4

AA(k) = il/.t,- (z(k)) o4,

w,(2() = LT 7z, 8)
F;(z,(k) is the grade of member]s;lilp of z(k) in F,
ety =B
3w (=())
with w,(2(k)) = 0 for all k, we getl ;hle following form:
.21"" (2(k)) =1 @

From these definitions, we define L discrete time signals and it can be
defined as

z, (k) = p; (2(k))z (),

and

z(k) = é x; (k) (5)

i=1

2.2 Filtering using the fuzzy model
In this section we modify the Kalman filter for the system given by
using (3) and (5). Suppose we are given the linear discrete time system
of the form.
z(k+1) = Az (k) +p(z(k)) A Az (k) +pu(z(k) Bu(k)  (6)
+p(2(k)) Gu(k)
y(k) = (k) +plz(k))v(k)
where the scalar h(z(k))€(0,1) and because the uncertain time-varying
matrix is AA4;(k)AAT(k) <1, we assume that the uncertainty matrix
is an additive process noise.
Then, the state of the system can be rewritten as
z(k+1) = Az (k) + p(z(k)) Bu (k) + pu(z(k)) wlk) 0]
where, w(k) =(AA+w(k)) is the overall process noise with unknown
uncertain matrix; thus we can treat the uncertain linear discrete system
by adjusting this process noise variance.
We combine the Kalman filter for the local systems given in (7) to
obtain a state estimator for the TS fuzzy model given in (2). The state
z of the system can be derived by assuming a recursive estimator of
the form. The predicted state is represented as
£ (k) = (I~ K(R) CR)z (k) + KlkYu(k) ®
7 (k+1)=Az" +h(z (k) Bulk) ©
where "-"superscript is to indicate a quantity before the measurement is

taken into account, and "+" superscript to indicate a quantity after the
measurement is taken into account.

Because of the modified state :?(k), the measurement residual is
defined as

n_w,

v(k) =y(k)— 2" (k) (10)
where v(k) is the measurement residual, and K(k) is a Kalman gain
whose matrices are to be determined.

The unknown process noise with uncertainty w are inferred by a
double-input single-output fuzzy system, for which the jth fuzzy
IF-THEN rule is represented by

IFz is A; and 7, is A,, THEN y; is E]. (11)
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where two premise variables z; and z, are the measurement residual

v(k) and change rate v(k), respectively, consequent variable y; is the
overall process noise, and A,-,- are fuzzy set. It has the Gaussian

membership function with center z,, and standard deviation ;U—

J

- \2
1z
2( oy )] (12)

In this paper, the GA methods will be applied to optimize the parameters
and the structure of the system, using the product-sum inference
method, singleton fuzzifier, center average defuzzifier, and Gaussian
membership function. That is, the defuzzified output of the fuzzy model
based on the overall process noise with unknown uncertainty is given by

ﬁ)}ij(zlj)XA(zzj)

f(z,.;aij;Eij)= exp

wy, =

T (13
J;A(IU) XA(sz)

According to the approximation theorem by the GA, the overall process
noise is optimized.
We define the estimator error = and its covariance with P as,
-y p=(337) (14)

The steady state Kalman filter presented can be used to estimate the
states of each of the L dynamic systems given in (7). This will give us
L local steady state estimates. Due to the estimated term w, the
covariance matrix of P™(k+1) becomes .

P{k+1) = AP (k) - K () GP(R) AT+ Gu,GT  (15)
When the unknown uncertainty is employed, the conventional Kalman
filter has to be modified.
We can find the optimal Kalman gain by using (15).

K (k) =P (K)CT(GPI ()G +S,)™ (16)
The predicted state is replaced by (16)
z; (k) = (I- K, (k) G)z; (k) + K, (k) (k) an
From (5), we can combine the local state estimates as
-~ L -~
z(k) = Yz, (k) (18)

i=1

2.3 Simulation results

In this section we consider state estimation for a discrete time model
of a truck-trailer system. A noise-free representation of a truck-trailer
system can be described as [6]

alk+1) = alk)+ —‘%Ztan(u(k)).

Blk+1) = B(8)+ L sin(alk)),

NE+1) = Nk + Vzaosm(k))sm(ﬂ’i%té@)
Bk+1) = E(k) + V%os(a(k))oos(éi’iﬂ%_t@ﬂfl) ©

where a is the angle of the truck, 8 is the angle of the trailer, & is
northerly position of the rear of the trailer, and E is the easterly
position of the rear of the trailer, ! is the length of the truck, L is the
length of the trailer, 7" is the sampling time, V is the constant speed of
backward movement of the truck, and u is the controlled steering
angle(measured counterclockwise with respect to the truck orientation).
The following noisy fuzzy model, adapted from {7], can be used to
represent the above system:
IFz(k) is F,
THEN z(k+1) = (4, + AA,z(k) + Bu(k) + Guw(k))

y(k) = Cz(k) +vlk)
IFz{k) is F, 20)
THEN z(k+1) = (4, + AA,z(k) + Bulk) + Gau(k))

y(k) = Gz (k) +v(k)
The premise variable z(k) is given as

_ alk) VT
z(k) = B(k) + /L (21)
The membership function in (20) are defined as

F,={0} and F,={tw} and we use following system parameters:

1-VIIL 0 0
A=| VIIL 1 0,
(vD?/(2/r) VI 1
1- V7L 0 0
A= VT/L 1 0/,
(vD?/(2/L)(x/100) V/(x/100) 1

Vi
B =B = 8 q=q=13x3: Gx=G'z=13x3

AA=+03 [=28m, L=55m, V=—1m/s T=05s

We will use the following matrices for the measurement noise covariance
S, =0.2> and the overall process noise with uncertainty is following by
the (11)

{Table1>The initial parameters of the GA

Parameters Values
Maximum Generation 200
Maximum Rule Number 50
Population Size 500
Crossover Rate 0.9
Mutation Rate 0.01
y) 0.75

truck angle ermor (degrees)

0 2‘0 4‘0 60 8‘0 1‘00 120
time (seconds)
<Fig.1> Truck angle error(degrees)

The two local state vectors of (7) are estimated according to (17), and
are then combined according to (18) to obtain the global state estimate,
Figure 1 shows that the simulation results of the proposed method. The
dotted lines are measurement errors and the solid lines are estimation
errors. And trailer position for a typical simulation with the initial
conditions [0} =—45", B{0] =—45°, and N[0]=—5m.

3. Conclustion

The uncertain nonlinear systems via the TS fuzzy system has been
presented. The steady state with uncertain is represented by the TS
fuzzy model structure, which is further rearranged to give a set of
uncertain linear model using standard Kalman filter theory. Then the
unknown uncertainty is regarded as an additive process noise, it
represented as a fuzzy system to compute the time-varying variance of
the overall process noise. To optimize the employed fuzzy system, the
genetic algorithm is utilized. Finally, the proposed state estimator is
demonstrate on a truck-trailer.
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