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Abstract -In this paper, a direct controller for nonlinear plants
using a neural network is presented. The controller is composed
of an approximate controller and a neural network auxiliary
controller. The approximate controller gives the rough control and
the neural network controller gives the complementary signal to
further reduce the output tracking error. This method does not
put too much restriction on the type of nonlinear plant to be
controlled. In this method, a RBF neural network is trained and
the system has a stable performance for the inputs it has been
trained for. Simulation results show that it is very cffective and
can realize a satisfactory control of the nonlinear system.

1. INTRODUCTION

The conventional design methods of a control system often
require the construction of a mathematical mode! deseribing the
dynamic behavior of the plant to be controlled. When such a
mathematical model is difficult to obtain due to uncertainty or
complexity of systems, these conventional techniques based on a
mathematical model are not well suited for dealing with. Artifical
neural network teachiques have been suggested for identification
and control of nonlinear plants for which conventional techniques
of control do not give satisfactory performance, such as the
accuracy in matching the behavior of the physical system.

A good method of applying neural networks for control

must have the following properties:

1. It must be applicable to nonlinear plants, since therc
are already good methods of control for linear plants.

2. It should not put too much restriction on the type of
nonlinearity that it can handle.

3. It is preferable to have an Unsupervised Learning
method for the neural network because the desired
output form of a system for a given input may be
known, but the input form of a plant that produces that
desired output is not generally known. Unsupervised
Training can avoid identification of the plant or its
inverse model, which is generally not casy to obtain.

4. The system should be stable at least for the class of
inputs it has been trained for.

3 In most cases open loop performance of a plant can be
observed and a approximate controller can be devised
for that. It would be desirable if we could put as much
knowledge as possible in the design of this controller
and only leave the cxtra fine tuning to the ncural
network controlier.

According tothe above requirements, a direct auxiliary controller
for nonlinear plants using neural network is presented.

2. CONTROLLER DESIGN

The controller presented here is composed of an
approximate controller and a neural network auxiliary controller.
The structure of controller is shown in Figure 1. The
approximate controller gives the approximate performance and the
neural network auxiliary controller is used for the purpose of
further fine tuning.

The approximate controller can be a PID or any other

conventional controller. It can be designed by using the known
dynamics of nonlinear plant. The neural network employed in
this scheme is an Radial Basis Function Network (RBFN). It
produces the complementary signal to further reduce the error e
between output y and the reference input r. The structure of
RBFN is showed in Figure 2. It is a network with two layers. A
hidden layer of radial basis neurons and an output layer of linear
neurons. A common choice for the basis function is a Gaussion
given by the equation:
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iIn the RBFN training stage we first observe the
performance of the system with the approxi -mate controller fora
certain period of time and measure the range of error between
the output of the plant and desired outpul. Then we divide this
error span into certain sections and for each section we perform
a perturbation testt We increased the input to the plant by ¢
whenever total square error between the output of the plant and
desired output falls within a specified region. If this change of
the input results in a lower value of the total square error, we
modify the outpul weight of the neural network controller to
work accordingly. This action is continued for all sections and the
whole process is repeated until no modification can reduce the
error.

Taking an overlapping Gaussian activation function for
kernel units supposedly provides a smoother response and better
generalization. but in our case the amount of interference was
so high and we obtained a better performance with
non-overlapping regions. Nevertheless, smooth- ness of the
output can be enhanced by dividing the correction for cach
section by modifying the cost function used for training from
J=7¢2 o J=?(enew2+k(enew -cold)2) for k<1.

During the training stage, each time only one kernel unit
responds and one weight is adjusted, This results in a shorter
training timc compared with Multi-layer Perceptron (MLP) type
networks. Since weights are adjusted by a small value each
time, the number of necessary iterations depends on the size of
error or the accuracy of the approximate controller.

The point that makes this method different is the way in
obtaining the necessary correc -—tions, which is based on the
effect of weight perturbation on the total square error for a
certain period of time. Perturbing the weights of a network is
used n Madaline Rule I (MR I training for analog
implementation of neural networks. Because this method does not
need prior knowledge about the transfer characteris~ tics of the
computing devices, it is not affected by the effects of neuron to
neuron  variations, Training the network based on its
instantaneous result of the error will cause instability when used
in a feedback loop. The performance of the system here is
observed for a certain period of time and if any adjustment for
any given amount of error increases the total square error, it
would not be accepted. This proves the stability of the system
for the class of inputs it has been trained for.

Generally optimization methods based

on parameter
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perturbation are bound to failure when many parameters are
involved in perturbation and that is because of the moving
target effect of the other parameters. It is not the case in the
proposed system for which only one or few related parameters
are active at each time. At present, methods for directly
adjusting the control parameters based on the output error are
not available. The work presented in this paper is a step toward
direct adaptive control. :

—_

Hidden layer
(Figure 2> Radial Basis Function Network.

3. SIMULATION STUDY

Different nonlinear systems were considered to evaluate the
effect of the proposed method. Figure 3 gives the effect of
controller when it is used for three different nonlinear plants. In
this figure , y(.) denotes the plant output without controller,ym(.)
denotes the desired output , r{.) denotes the reference input and
yc(.) denotes the output of the plant with controller. An RBF
type network with 30 kernel units each sensitive to different
ranges of error was used. Input weights and activation function
of the units were fixed. Output weights were perturbed and
adjusted according to the effect of perturbation on the total
square error for 400 sampling time. For a sinusoidal input
(r(k)=sin(k/50)) and perturbation amount of =0.1, the amount of
reduction in aggregated square error for a full cycle of input is
example lifrom 369 to 1.33, example 2:from 10584 to 26.44 and
example 3ifrom 32.11 to 456. To observe the learning and
generalization capability of the system, the controller was trained
on a step response and its performance was observed on the
sinusoidal input. Training the network with different types of
input will enchance the generalization capability of the system.

Examplel
1.2y(k-1)
="~ +0.5 k-1
Y = 2 0Sulk =D
¥, (k)=03y (k-1)+02y, (k-2)+0.5r(k-1)
Example2

13+ y(k -1 + y(k -2)* '
Y (k)=07y (k-D+0.1y,(k-2)+r(k-1)

Example3

y(k) = sat (0.5y(k —1)+0.2y(k - 2) + 2.1u(k - 1))

Y. (k)=048y (k-1D)+02y, (k-2)+r(k-1)
6
sat(x)= -3+ —m——
(sat (x) 1+ exp( —x))

4. CONCLUSIONS

A neural network controller for nonlinear plants is used in

combination with an existing conventional controller, which
removes the need for a generalized training scheme. The
controller is guaranteed to perform stably for the class of inputs

that it has been trained for. Using this method of control does
not require assumption of a model for the plant and it makes it
different from conventional control methodologies. Further -more,
since training of this network does not require backpropagation
of error,it makes direct adaptive control possible, a structure
beyond the capabilities of backpropagation based on neural
networks.The structure used here can be view as a fuzzy
controller implementation for which the control actions or rules
which depend on the error between the plant output and the
desired output are deduced in training timelt can also be viewed
as a gain scheduling adaptive controller which can work for any
unknown plant with no attempt to linearize the system at each
region.
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<Figure. 3> Ym(.) is the output of the reference model,

Y(.) is the output of system without NNC and Yc(.) is the

output of system without NNC in the example1,2 and 3.
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