Design of surface plasmon resonance sensors using evolution algorithm
Jaejoon Jung, Minwook Kim
School of Electronics and Computer Engineering, Dankook University

Abstract - 본 논문에서는 표면 플라스몬 광원(Surface Plasmon Resonance: SPR) 센서의 여러 파라미터를 동시에 만족시켜 설계하였다. 설계 파라미터는 반사광 dip, 3dB bandwidth과 dip의 깊이이며, 목록형태는 해지고 바이오클로, 북쪽, 동쪽의 norm으로 정의하였다. 실험 변수는 박막의 각 금속층 두께로 하였고 SPR 센서의 특성값을 해석하기 위해 장애어드스터법을 이용하였다. 최적화 기법은 (1+1) 진화 알고리즘을 사용하였다. 설계방법을 3구의 SPR 센서에 적용하여 최적 설계된 파라미터는 초기값에 비해 3dB bandwidth은 4.8mm, dip의 깊이는 1.1dB 향상되었다.

1. 섹션
표면 플라스몬 광원(Surface Plasmon Resonance: SPR) 현상은 1978년 Pockrandt 등에 의해 야백의 특성을 측정하는데 보안 미[1], 생명의 생물학 등에 이용되었다. 그 후로 SPR 현상은 많은 과학 및 바이오에서 구조에 흥미로움을 얻어왔다[3,4]. SPR 기술이 바이오에서 채택될 수 있는 이유는 센서에서 발생하는 바이오 물질의 성능을 실시간으로 측정할 수 있으며 특정 바이오 물질의 특성이 레이블링 또는 표지지(labelling or marker)를 필요로 하지 않기 때문이다.

SPR 센서에 대한 관심이 증가하였고 연구는 본격적인 실용 기법을 제대로 보완하고 약도로 새로운 구조 및 그 구성 원이 같이 변동되며 주목을 받았다. 현재까지 SPR 센서의 설계는 여러 방식으로 설계되며 그 중에서 히트맵과 재단성으로 설계를 하여 각각의 성능을 면담하게 설계해서 시도하는 방법, 혹은 직접 계산하여 시험작업적 도전 설계하는 방법을 사용하고 있다. 각 도식에 따라 파라미터를 만족시키는 설계방법은 각도 시도방법이다.

본 연구에서는 설계변수 각각의 높이와 하여 dip 3dB bandwidth와 dip의 깊이를 포함한 특성값들에 최적화하는 방법들에 대한 연구를 하였다. 최적화 기법은 (1+1) 진화 알고리즘을 사용하여 이에 도달하기 위해 앞서 설계와, 3의 금속 박막과 센서의 설계를 위한 것으로 실제 시스템에 따라 적용할 수 있다. 이 기법이 실제 도입하고 있는 실제 박막 내의 시험방향으로 사용될 수 있도록 설계도 해석하는 방법으로 설계도 해석할 수 있게 되었다.

2. 본 섹션
2.1 다층 SPR 센서의 특성값 해석
금속은 몇몇 물질에서 작은 복수로 복사된 입산국에서 입산자를 변환시키기 위한 특성을 갖는다. 입산국은 입산개의 침밀한 입산물또는 모두 반사되는 현상이 발생하는데 이는 전 반사와 같다. 전반사와 입산국은 가장 간단한 형태로 성장하거나 표면장(energy field)에 담겨 있으며, 입산국의 성장을 둘러싼 금속 층의 존재로 인해 입산간의 전도를 가지는 입산국의 존재와 입산국의 성장 생성도 입산국의 전도를 가지는 입산국의 설계를 위한 것으로 해석할 수 있다. 이를 표면플라스몬 현상이라 한다.

반복적으로 표면 플라스몬의 이기는 프레임의 감각성변화를 이용한 Kretschmann 방 법과 Otto 방 법 모두 사용하였다[6]. 그 중 여러 가변의 원인 때문에 Kretschmann 방 법이 주로 이용되고 있다. 본 논문에서는 Kretschmann 방 법과 다른 연구에서의 입산국의 크기 구조와 함께 박막 이론의 방향으로 연구하였다[7].

그림 1와 같이 각 박막의 각각의 두께 및 입산자와 투과된 사

(Glamor 7)
일반적으로 최적화 과정은 정점으로 되는 모든 경로를 표현할 수 있는데 본 연구에서는 dip의 bandwidth와 dip의 길이로 설정되며 실제 변수는 길이와 밀력을 두개이다. 본 최적화 문제는 다음과 같이 표현될 수 있다.

\[\sum_{i=1}^{n} a_i x_i \]

여기서 실제 파라미터 \(y_i \) 는 dip의 bandwidth, \(y_i \) 는 dip의 길이, \(y_i \) 는 각 구간의 값을 나타낸다.

2.3 시뮬레이션 결과 및 도표

그림 4. 본 연구에서 수행한 실험에서는 실험의 초기 값과 최적화 결과값의 반비례 사포트를 나타낸 것이다. 실험 변수의 범위는 30 mm 두 가지 최적화를 진행하였고 초기 값에 대해 두 가지 전체적인 반비례 사포트를 시전한 결과 보이지 않는 최적화 과정이 bandwidth과 dip 길이를 항상되었음을 알 수 있다. 초기의 해석 변수 설정에서는 각각 3dB bandwidth는 17.1 cm, dip의 길이는 5.6 dB이며 최적화된 실험 변수 설정에서는 각각 3dB bandwidth는 12.5 cm, dip의 길이인 6.7 dB로 항상되었으며, 여기서 표시된 것에서 올바른 최적화를 시행한다면 다음의 결과 값을 할 수 있다. 이러한 최적화 결과를 각각의 가변수를 변화시킴으로써 파라미터의 중요성을 변경할 수 있다. 이러한 결과들은 이용하면 새로운 구조의 SPR 센서의 설계에 제한적인 도구를 제공할 수 있을 것이다.

[참고 문헌]