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Abstract. Based on a weakly non-Gaussian theory the occurrence probability of freak waves
is formulated in terms of the number of waves in a time series and the surface elevation kurtosis.
Finite kurtosis gives rise to a significant enhancement of freak wave generation in comparison
with the linear narrow banded wave theory. For fixed number of waves, the estimated amplifi-
cation ratio of freak wave occurrence due to the deviation from the Gaussian theory is 50% -
300%. The results of the theory are compared with laboratory and field data.

Introduction

The last decade freak waves have become an important topic in engineering and science and
are sometimes featured by a single and steep crest causing severe damage to offshore structures
and ships. Freak wave studies started in the late 80’s [1] and the high-order nonlinear effects
on the freak waves were discussed in the early 90’s [2, 3]. Due to the many research efforts, the
occurrence of freak waves, their mechanism and detailed dynamic properties are now becoming
clear [4, 5, 6, 7, 8, 9]. The state of the art on freak waves was summarized at the Rogue Wave
Conference, held in 2000 and 2004 [10, 11]. It was concluded that the third order nonlinear
interactions enhance freak wave appearance and are the primary cause of freak wave generation
in a general wave field except for the case of strong wave-current interaction or wave diffraction
behind the islands.

Numerical and experimental studies have demonstrated that freak-like waves can be gen-
erated frequently in a two-dimensional wave flume without current, refraction or diffraction
[2, 4, 7, 12]. Moreover, the numerical studies clearly indicate that a freak wave having a sin-
gle, steep crest can be generated by the third order nonlinear interactions in deep-water [2].
Also, the theoretical background of freak wave generation has become more clear [6], but the
quantitative occurrence probabilities in the ocean remain uncertain. In addition, it is still ques-
tionable how to characterize the dominant statistical properties of the freak wave occurrence
in terms of nonlinear parameters, spectral shape, water depth and so on.

Nevertheless, although there is no doubt that the third order nonlinear interactions relate
with the steep wave generation in the random wave train, the theoretical background of the
relationship between the freak wave generation and the third order nonlinear interactions is not
well-established. Freak wave generation is sometimes discussed in the context of the Benjamin-
Feir instability in deep-water waves because of the similarity of the steep wave profile itself
[2, 7. The last two decades, the Benjamin-Feir type instability of the deep-water gravity
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waves has been studied by many researchers using the nonlinear Schrédinger type of equations
(13, 14, 15], mode-coupling equations [16], pseudo-spectral methods [17] and experiments [18].
However, there is disparity between the periodic wave instabilities and random wave behavior,
because the broad banded spectra and random phase approximation are essential describing
the ocean waves in nature [17, 19]. Thus, the energy transfer of random waves due to four-wave
interactions has been studied for describing spectral evolutions [20, 21]. By means of a series
of numerical investigations Yuen and Lake [22] stated that the instability is confined within
an initially unstable range and becomes weak if the spectral bandwidth broadens. Alber [23]
mathematically demonstrated that for a random sea the Benjamin-Feir instability vanishes if
the wave spectrum is sufficiently broad. Therefore, there is discrepancy between the nonlinear
behavior of periodic waves and random waves.

Janssen [24] investigated the freak wave occurrence as a consequence of four-wave interac-
tions including the effects of non-resonant four-wave interactions. He found that the homo-
geneous nonlinear interactions give rise to deviations from the Gaussian distribution for the
surface elevation on the basis of the Monte Carlo simulations of the Zakharov equation. Sur-
prisingly, inhomogeneities only play a minor role in the evolution of the wave spectrum. He
also formulated the analytical relationship between spectral shape and the kurtosis of the sur-
face elevation. These results have the potential to unify previous freak wave studies covering
nonlinear interactions, spectral profiles to nonlinear statistics and etc.

The purpose of this study is to investigate the relationship between kurtosis and the oc-
currence probability of freak waves through the nonlinear four-wave interactions. First, for a
nonlinear stochastic wave field the relationship between high-order moments including kurtosis
of surface elevation and nonlinear transfer function is derived. Second, the wave height and
maximum wave height distributions are formulated as a simple function of kurtosis by the non-
Gaussian theory. Third, the wave height distribution is compared with laboratory experiments
and the occurrence probabilities of freak waves are compared with field observations. Finally,
the dependence of the occurrence of freak waves on the number of waves and kurtosis will be
analyzed and discussed.

High-order Moments in the Nonlinear Stochastic Wave Field

Our starting point is the Zakharov equation [25], which is a deterministic nonlinear evolu-
tion equation for surface gravity waves in deep water. Zakharov obtained from the Hamilton
equations an approximate evolution equation for the amplitude of the free surface gravity waves
[25], that contained the third order non-resonant and resonant four-wave interactions. In order
to eliminate the effects of bound waves he applied on B a canonical transformation of the type

B = B(b,b*), (1)

where b is the normal variable of the free gravity waves. The evolution equation for b, called
the Zakharov equation, becomes

oby | B *

5{ +iwi by = —l/dk2,3,4T1,2,3,4b2b3b451+2—3—4, (2)
where, for brevity we have introduced the notation b; = b(l%), etc, and the nonlinear transfer
function 77 53 4 as found by Krasitskii[21] enjoys a number of symmetries which guarantee that
the Zakharov equation is Hamiltonian and conserves wave energy. In Janssen’s Paper [24] it was
shown that in the context of the deep-water version of the Zakharov equation extreme surface
gravity waves are generated by nonlinear focusing in a random wave field. This process also
causes the Benjamin-Feir instability of a uniform wave train. As a consequence, for deep-water
waves a considerable enhancement of the probability for extreme waves is found.
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The nonlinear term in Eq.(2) will generate deviations from the normal, Gaussian probability
distribution function (PDF) for the surface elevation. It is of interest to determine these
deviations because it gives us information on the occurrence of extreme sea states. According
to Eq.(29) of Janssen (2003), the fourth moment (7*) and kurtosis y4 can be obtained in terms
of the action density N and of the nonlinear transfer function 7} 2 34. The result is

4
Kao = QQ -3 (3)
my
= pa—3 (4)
12 —
= g2m2 /dk1,2,3,4T1,2,3,4\/w1wzw3w451+2—3—4RT(AW,t)N1N2N3 (5)
0

where k49 is the fourth order cumulant of the surface elevation 1 and is equivalent to pug4 — 3,
where 4 is the normalized fourth order moment, kurtosis of the surface elevation. The transfer
function R, = (1 — cos(Awt))/Aw — P/Aw for large time t, where Aw = wi + wy — w3 — wy
and P denotes the principle value of the integral to avoid singularity in the integral.

Wave Height Distribution

Following a central limit theorem, linear, dispersive random waves have a Gaussian PDF for
the surface elevation. Finite amplitude effects result, however, in deviations from the Normal
distribution, as measured by a finite skewness and kurtosis. We assume that waves to be
analyzed here are unidirectional with narrow banded spectra and satisfy the stationary and
ergodic hypothesis. Let 7(t) be the sea surface elevation as a function of time ¢ and ((t) an
auxiliary variable such that 7(t) and ((t) are not correlated. Assuming both n(t) and ¢(t) are
real zero-mean function with variance o, we have

Z(t) = nt) +i(t) = A(t)e??, (6)
A) = n?(t) + (1), (7)

o(t) = tan”! (%) (8)

where A is the envelope of the wave train and ¢ the phase. Mori and Yasuda [26] investigated
the wave height distribution as a function of kurtosis and skewness using the joint probability
density function of n(t) and ((t) for a narrow banded weakly nonlinear wave train. We will follow
this approach closely. For weakly nonlinear waves deviations from the Normal distribution
are small. In those circumstances the PDF of the surface elevation can be described by the
Edgeworth distribution. As there is no-correlation between n(t) and ((t), the joint probability
density function of 5(t) and ((t) becomes

p(n,¢) = % exp [—%(772 + CQ)]

3!

BE
X [1 3 ngo B——n)_m_!“(B—n)anﬂ—“(n)H"(o

R 4]

T msz«n)nHzx—n(n)Hn(O} (9)

where H,, is the nth order Hermite polynomial. All variables will be normalized by the variance
of the surface elevation o = m(l)/ 2 (where myg is the zero moment of the wave spectrum) and
have zero-mean.
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The PDF of the envelope A follows now immediately from an integration of the joint prob-
ability distribution

p(A,¢) = Ap(n,() (10)

over ¢, hence

p(4) = [ 4o p(A, 6). @

Performing the integration over ¢ it is found that the first term of (9) gives the usual Rayleigh
distribution for wave amplitude. Assuming the narrow band spectra, wave height H equals 24
and hence the wave height PDF becomes

1 12
p(H) = ZHe_EH [1 + ,‘<L40AH(H)] y (12)
where
1 4 2
Ap(H) = 5o (H* - 32H +128). (13)

The comparison of exceedance probability of wave heights with experimental data is shown
in Fig.1. The filled circles e denote experimental data, the Rayleigh distribution is represented
by the dotted line, Eq.(12) corresponds to the solid line, and the wave height distribution
including skewness effects proposed by Mori and Yasuda [26] (denoted as ER, Edgeworth-
Rayleigh, in the figure) corresponds to the dashed line. For simplicity we refer to Eq.(12)
as Modified ER (MER) hereafter. Due to the nonlinear effects, the exceedance probability
obtained from the laboratory data departs for large wave height from the Rayleigh distribution.
Both the MER and ER distributions for the exceedance probability of wave heights follow
this separation at large amplitude region. Surprisingly, the MER distribution shows better
agreement with the laboratory data than the ER distribution, although the corrections to the
Rayleigh distribution only stem from effects of finite kurtosis.

Maximum Wave Height Distribution and Freak Wave Occurrence
The PDF of maximum wave height p,, in wave trains can be obtained once the PDF of
wave height p(H) and exceedance probability of wave height P(H) is known [27], thus
pm(Hma:c)deax = N[l - P(Hmam)]N—lp(Hmaz)deaz (14)

with N the number of waves. For sufficiently large N one may use the approximation

N N
lim [1 — P(Hpaz)]Y ~ Aim_exp [~ NP(Hpas)], (15)

N—ooo
Substituting Eq.(12) into Eq.(14), gives the PDF of the maximum wave height, py,,

N Hige
a8 [1 + ka0Ar(Humaz)]

X exp {—Ne"ﬁz@m 1+ K4OBH(HmaI)]} dH ox (16)

pm(Hmaz)deam -

Equations Eq.(16) are evaluated as a function of N and &4 (or p4). For k4 = 0 results are
identical to the ones following from the Rayleigh distribution. For simplicity it will be assumed
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Figure 1: Comparison of wave height distribution from laboratory data and
theory (u3 = 0.21,u4 = 3.62; e: laboratory data, solid line:
Eq.(12), dashed line: [26], dotted line: Rayleigh distribution).

that Hy/3 = 4m(1)/ 2, although it is Hy3 = 4.004mé/ % in an exact linear random wave theory.

The freak wave condition in this study therefore becomes Hypnqz/ m(l)/ Zs 8, and we obtain from
Eq.(16) the following simple formula to predict the occurrence probability of a freak wave as
function of N and ky,

Ppreak = 1 —exp [=BN(1 4 8ky49)] (17)

where 8 = e® is constant.

Using Eq.(17) it is seen that the effect of kurtosis becomes already of the same order as
linear theory for k4 = 1/8. This corresponds to us = 3.125, and is not a strong nonlinear
condition. Hence, both the effects of finite kurtosis and the number of waves N are important
for determining the probability of maximum wave height in the nonlinear wave train.

The observed data was originally collected using an ultra sonic wave gauge at a depth of
30m, off the coast of the Pacific Ocean. The length of each record was 20min and the data
were collected every hour from March 1 to the end of June in 2001. The wave statistics such
as Huaz, Hiss, T1ys, N, ps, and pg were operationally calculated and archived. Note that the
water depth of 30m is relatively shallow water. Therefore, to eliminate shallow water effects,
the data are excluded if the dimensionless water depth k,h is less than 2.0 (it corresponds to
T3 > 8s). The total number of valid data was about 2546.

We discuss the general behavior of the PDF of maximum wave height in the nonlinear wave
field, by showing the ensemble averaged H,../H; 3 of each bin as a function of us and N
in Fig.2. The brackets <> indicate the ensemble averaged value. Fig.2 (a) is observed data
and (b) is the expected value of Eq.(16) through numerical integration. The dependence of
Hypaw/Hyy3 on N is weaker than expected from Eq.(16). This is because the length of observed
time series was fixed to 20min, so we cannot discuss the dependence of Hy,qr/Hi/3 on number
of waves in detail. On the other hand, the dependence of (Hme./Hi/s) on pg is clear. The
theoretically predicted (Hp,./Hi/3) is underestimated compared to the observed data but it
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Figure 2: Dependence of (Hye/H1/3) on pg and N.

agrees with the observed data in a qualitative sense. The observed (Hnqaz/Hi/s) monotonically
increases for increasing ug4, but for high values of kurtosis the theoretically estimated value of
(Hmao/Hi/3) is lower.

Conclusion

For a narrow-band, random wave train we have shown that the kurtosis of the surface eleva-
tion is mainly determined by resonant and non-resonant wave-wave interactions, while bound
waves only give a small contribution. Thus, the kurtosis and related high-order cumulants can
be evaluated on the basis of Janssen’s work[24]. Second, we have shown that for a narrow-band
wave train the wave height and the maximum wave height probability distribution depends to
a good approximation on the wave variance and the kurtosis. As a consequence it is possible
to formulate the freak wave occurrence probability in terms of the kurtosis and the number of
waves in a time series. From the comparison with laboratory and field data, we conclude the
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following:

e The second order cross-cumulant kg, is 1/3 of the fourth cumulant, k4, of the surface
elevation.

e The weakly non-Gaussian theory shows the dependence of the expected maximum wave
height on kurtosis, which is supported by the observed data.

e The occurrence probability of freak waves is significantly enhanced by the kurtosis increase
caused by four-wave interactions.

In order to check the validity of the approach developed here, in particular the dependence

of freak wave occurrence on the kurtosis and the number of waves, systematic and continuous
field measurements of freak waves including directional wave spectra and nonlinear statistics
will be critically required.
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