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Numerical Computations of Extreme Wave Load on a Cylinder Using
Frequency-Focusing Unidirectional Waves

JO-HYUN KYOUNG, SA-YOUNG HONG AND HONG-GUN SUNG

*Offshore Plant Research Division, MOERI/KORDI, Dagjon, Korea

KEY WORDS: Extreme Waves, Frequency Focusing, Wave Loads, Potential Flow, Finite Element Method

 ABSTRACT: Numerical computations are made to predict wave loads on a vertical cylinder in an extreme wave. To generate the extreme
wave, a frequency-focused unidirectional wave is adopted in three-dimensional numerical wave tank. The mathematical formulation is
made in the scope of the potential theory with fully nonlinear free surface conditions. As a numerical method, finite element method
based on variational principle is applied. Comparisons between the present numerical results and the previous computation data show a

good agreement.

1. Introduction

The wave load and its influence on the response of offshore
structure have been well investigated through the statistical
approach based on the linear theory. Linear approach is
applicable to estimate the operability of offshore structure in
operational condition. But this approach has a limitation to
apply the extreme condition such as freak wave, which
corresponds to extreme value of wave spectrum.

The extreme wave such as freak wave has a wave height
twice times larger than ordinary significant wave height.
Peregrine(1976) has reported that this extreme wave can occur
where the water depth is relatively shallow or there is an
interaction between wave and current. This extreme wave can
be occurred by the superposition of waves that have similar
frequencies. The experiments by Chaplin et al.(1997) has
shown that the extreme wave can be made by frequency
focusing,

The extreme wave can be occurred in deep sea. In this case
its wave height is around 30m. The extreme wave is easy to
be a breaking wave and produces extreme wave load about
100 ton/m’. Generally the design load of an ocean going
vessel is about 15ton/m’. Therefore the extreme wave can be
expected to make abnormally severe damages on offshore
structure.
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In addition, the wave slope of extreme wave is quite large
so that the ocean-going vessel could be capsized.

So investigation on characteristics of extreme wave as well
as the generation mechanism is very important to safety,
survivability and operability of offshore structures. There are
two kind of well-known method for the generation of extreme
wave, One is to use the frequency-focusing unidirectional
wave. There have been many numerical and experimental
studies using the frequency focusing(Hong et al.,, 2002 Zou &
Kim, 1995; Chaplin, 1996; Clauss, 1999; Smith & Swan, 2002;
Contento et al.,, 2001, Kim et al, 2004). The other is based on
the self-modulation of wave induced by nonlinear wave-wave
interaction. Stokes wave instability is well known for inducing
such a self modulation(McClean, 1982). Weakly nonlinear
wave model such as cubic nonlinear Schriedinger equation
has been applied to explain the nonlinear wave-wave
interaction related to the generation of extreme wave(Trulsen
& Dysthe, 1997; Osborne, 2001; Grue, 2002).

The main topic of present study is to develop an efficient
numerical method to predict wave load induced by extreme
wave. The frequency-focusing method is applied. The wave
load on the bottom mounted vertical cylinder is investigated.
As a numerical method, finite element method based on
variational principled is adopted. The nonlinear free surface
problem is solved in time domain by utilizing potential flow.
The wave elevation and wave load are obtained and

compared with previous research.
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2. Mathematical Formulation

To describe the mnonlinear free surface motion
efficiently, the Cartesian coordinate is adopted as the
coordinate system. The positive z axis is taken opposite
to the direction of gravity and Oxy plane coincides with
the undisturbed free surface. Fig. 1 shows the definition
of computation domain. The boundary surfaces for the
wavemaker, body, wall and free surface are denoted by
Sw, S and Sp respectively. Focusing point is denoted by
xp that is the distance from the wavemaker. The diameter
of cylinder which is located at focusing point is denoted
by D. The length, half width and water depth of the

numerical wave tank are defined as L B and H

respectively.
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Fig. 1 Definition of computation domain

It is assumed that the fluid is incompressible, inviscid
and its motion is irrotational. The surface tension effect is
ignored. So there is the velocity potential ¢ which is
governed by Laplace equation.

V2=0in 2 ey

The nonlinear free surface conditions on z = ( (m,y,t)
can be given by the following kinematic and dynamic

conditions.
Ct = ¢z - ¢z gz - ¢yCy on SF (2)
§ == 31V '~ g¢ on s ®

where g is gravitational acceleration. As an initial
condition, it is assumed that the fluid motion is at rest.
The wall and body boundary condition is given as
follows.

¢=0onz=-H 4)
¢=0ony= xB ()

The boundary condition at the wavemaker is given by

following equation.
pp=V-n ©)

where V is the lateral velocity at the piston-type

wavemaker.

3. Time Domain Analysis

Numerical computation on extreme wave produces
highly nonlinear free surface elevation such as a sharp
crest. For this reason, to analyze the nonlinear free
surface problem in time domain, the numerical stability
as well as accuracy is very important. In the present
study, finite element method based on variational
principle is adopted to obtain the stable solution for the
given nonlinear free surface problem. By introducing of
variation ], the Lagrangian L corresponding to ] is

obtained as follows.

t
J= f 0 Ldt @)

L=p ff Sr¢gd5- g ff Spgg”zdS— % [[/ n|w'2d )

where p is the density of water. Taking the variations
on ] with respect to { and ¢ results in a stationary
equation, which is equivalent to the governing equation
and free surface conditions as given in Egs. (1) ~ (3).

To solve the equivalent variational functional given by
Egs. (7) ~ (8), the whole domain is discretized into a
number of finite elements. As a basis function for finite
element the linear element is adopted. The set of trial
function basis is denoted by {N]} Then the potential

function ¢ and the surface elevation ( can be
approximated by the span of the bases.
M M,
b= DI6N, . C=2oeN, ©)
j=1 =1

where ¢; and (; are the node-wise value of velocity

potential function and surface elevation in finite element
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space, respectively. M is the total number of nodes and
My is the number of nodes only on free surface. The
stationary equation by taking variation of Eq. (8) can be
obtained as follows.

T;46= K0, (10)
P 0K,
b= “2“451' 3¢, &~ 9Py (11)
where
n
ij = / N;\,N]dS (14)
Sp

It is well known that the solution of the above
discretized problem satisfies the conservation of mass and
energy. It is quite interesting to note that Eq. (12),
Laplace equation, behaves like constraints for the above
two free surface boundary conditions. The more detailed
descriptions on the finite element analysis is shown in
Kyoung et al.(2005)

4. Frequency Focusing

Frequency-focusing method utilizes the linear wave
theory in which the longer wave propagates faster than
the shorter wave. Therefore the focused wave can be
made in the numerical wave tank as well as the model
experiment. The water surface elevation induced by
different waves which have similar frequencies can be

expressed by the linear wave theory as following way.

N
nlz,t)= E a,cos (k,x— 2w f t—,) (16)
n=1
where N is the number of waves and a, is the wave
amplitude corresponding to the wave with frequency f,.
The phase of each wave is denoted by v,. The wave

number k, is given by linear wave theory as follows.

(2nf,)? = gk,tanhk, H 17)

where H is the mean water depth. If z; is the focusing
point and t, is the focusing time, the phase 1, for each

wave given in Eq. (16) at focusing point can be rewritten
as following equation.

¥, =2mn+k,x,—2nf b, m=0,£1,%2,... (18)

Surface elevation at x=0 can be expressed with the
phase given in Eq. (18) in following equation when the

wavemaker is located at x=0.

N
n(0,t) = Y a,cos (— k,x, — 21f ,t) (19)

n=1

Since the focused point is based on the linear wave
theory, the focused wave does not generally appear at

the given focused point ;. Therefore it needs some
corrections. In the present study, the focusing point x,is
obtained by changing ¢, since Rapp & Melville(1990)
reported that the focusing time t, given in Eq. (18) does

not affect the wave shape at the focusing point.

5. Numerical results

The developed numerical method is validated by
comparing with the previous experiment by Chaplin et
al. (1997). The length, width and water depth for the
numerical validation are taken by 28m, 1.5m and 0.525m,
respectively. A bottom-mounted circular cylinder with
0.1m diameter is located at the focusing point which is

12.5m apart from the wavemaker.

Fig. 2 Grid system using finite elements

The grid space in outer side of the vertical cylinder is
taken by 0.1m horizontally while denser grids are applied
near the vertical cylinder. The total number of element is

taken by 6 vertically.
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Fig. 9 Maximum bending moments at focusing point
by varying wave slope.

Especially the cosine spacing is applied to vertical
direction so that the grid spacing becomes denser near
the free surface. The typical grid system is shown in Fig,
2.

The wave damping region is located on opposite side
to wavemaker to prevent the wave from reflecting. The
total number of wave component is taken by 34, which is
equally divided(f, =0511Hz, f,, =1.244Hz). The wave
slope is denoted by A,K,. A, is the wave amplitude at
focusing point. The wave number K, is defined by
Ko=K[1/2(f,+fy)]. The 4th
method is adopted for

order Runge-Kutta

time integration. The time
integration step is taken by 1/(120f,,).

Fig. 3 shows the numerical comparison of spatial
distribution of wave elevation without the vertical

cylinder when A;K, =033. The numerical comparison

shows a good agreement. Expecially the steep wave
profile can be well observed at focusing point.

Time history of wave elevation at the focusing point
without vertical cylinder is shown in Fig. 4. The typical
extreme wave property that the sharp crest is following
by deep trough is well observed. It can be thought that
the ocean going vessels or floating offshore structures
have

which encounter the extreme wave

quite a
possibility to be capsized.

Fig. 5 shows the time history of bending moment on
vertical cylinder. A good agreement can be found when
it is compared with the previous study(Chaplin et al,
1997).

Fig. 6 shows the snap shot of wave elevation when the

focused wave occurs at the location of the vertical

cylinder. Local run-up phenomena on the vertical
cylinder can be observed.

Fig. 7 and Fig. 8 show that time history of wave loads
and bending moments at the focusing point by varying
wave slope. It can be observed that the maximum wave
load and bending moment increase as the wave slope
increases. In Fig. 9, the maximum of the bending moment
shows a quadratic increment as the wave steepness

increases in the present numerical computations.

6. Conclusions

In the present study, a numerical method is developed
to investigate the wave load induced by the extreme
wave. As a numerical method, finite element method
based on variational principle is applied. To obtained the
focused wave, the frequency focusing of unidirectional
wave is utilized. From the comparisons with the previous
study, the developed numerical method has a good
agreement. In variation of wave slope, it is observed that
the wave loads and bending moment tends to become
steep as the wave slope increases. Especially it is also
noticed that the maximum of the bending moment has a
quadratic increment according to the increase of the wave
steepness.
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