s FFes) 200609 FA I =F3 pp. 39%6~402
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ABSTRACT: An efficient spline boundary element scheme is newly developed for water wave scattering of an incident wave
train on a submerged breakwater. Validation of the present scheme is accomplished through the numerical experiments for
various cases, by comparing the numerical results with theories vailable in the literature. Very accurate reflection and
transmission coefficients for thin horizontal breakwater are obtained. It is observed that the reflection coefficient for the
rectangular breakwater is significantly affected by the thickness. Horizontal and vertical forces on the breakwater for various

thicknesses were also investigated.

1. Introduction

This research is motivated by a desire to build a
efficient breakwater to be installed in the environment
where strong tidal current exists. Various types of
breakwater have been constructed to protect a coastal
area by reflecting back the incident waves into the sea
(Cho and Kim, 1998; Kee and Kim, 1997). However, the
breakwater may cause other unwanted problems if tidal
current is changed by the breakwater. Among the
breakwaters, floating breakwater may be very effective
if its thickness is carefully chosen not to affect the tidal
flow field much. Thus, horizontal breakwater with finite
thickness is considered for the present work.

Two-dimensional water wave scattering of an incident
wave train on the breakwater is formulated by the
integral equation using the linearized boundary
conditions (Boo, 2002; Chen et al, 2002). A spline
boundary element (SBEM) due to Boo and Lee (1996) is
newly employed for the present work and the integral
equation is expressed using spline elements. Here we
used three different spline elements, such as, spline
element with smooth surface, with discontinuity on left
side, and with discontinuity on right side.

The SBEM scheme is applied to solve the flow past
the circular cylinder and thin plate in the infinite fluid.
It is further extended to investigate the reflection and
transmission coefficients for a submerged horizontal
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breakwater. In addition, reflection coefficient and wave
forces are examined for the various thickness of a

submerged rectangular breakwater.
2. Mathematical Formulation

We assume that wave motions are uniform in the
longitudinal direction thus allowing two-dimensional
analysis. Wave motions are also assumed to be small
relative to the wavelength that the linear theory is
applicable. We use the Cartesian coordinates (x, y) as
shown in Fig. 1. The positive y-axis is in the upward
vertical direction and the positive x-axis is to the right
in the horizontal direction. The undisturbed free surface
coincides with y=0. The fluid occupies the region 2. A
monochromatic incident wave train of amplitude A and
angular frequency 1 propagate toward a submerged

structure in the water of variable depth as shown Fig.1.

Fig. 1 Definition Sketch of wave scattering

The fluid is considered to be invicid, incompressible
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and its motions are irrotational. Thus the wave field
may be represented by the velocity potential & (z,y,t).
For time harmonic motion, time term can be separated
by writing the velocity potential as

®(z,yt) = Relpr(z,y)e ™} 1

where Re is the real part, ¢ (z,y) is a complex spatial
velocity potential, w is the incident wave frequency,
i= /=1, t denotes the time. The velocity potential

@ (z,y,t) satisfies the Laplace equation within the fluid.
VP (z,y,t) =0 2)

The potential function ¢(z,y) can be decomposed into
two parts as

¢(x.y) = ¢(z,y)+ dplz,y) ©)

where ¢;(z,y) is the known incident potential and
¢plz,y) the diffraction potential. For the right-moving
incident wave, the potential ¢,(z,y) can be represented
by

biley) = i 24 okl d) . @

w coshkd

where A is the incident wave amplitude, k the wave

number which satisfies the dispersion relation of
w? = gktanh (kd) (5)

in which g is the acceleration of gravity. Also, ¢ (z,y)

is subject to the boundary conditions of free surface r;,
body field

boundary I'y_ and Iy, .
(1-3), the
diffraction potentia l¢p(z,y) is obtained as

surface I, sea bottom [, and far

From Egq. Laplace equation for the

V,(z.y)=0 in Q ©

The linearized boundary conditions can be written as

99p :

(1) —
ay _?éD—O' on Iy (10)

0%p __ B9

= ———

on Iy and I (11)
on on

lm a@i” F ikgp=0, o >+oo on I (12)

Tt
In Eq. (11), n is boundary normal vector which is set

to be positive pointing outside the fluid domain as
shown in Fig. 1.
Once the diffraction potential ¢p(z,y) is determined,

the dynamics pressure p(z,y,¢) can be obtained by

means of the linearized Bernoulli’s equation.
plzyt)=— p%? = Re lipwg (¢, y)e '} (13)

where p is the density of fluid. The wave forces

exerting on the structure can be evaluated by

integrating the fluid pressure over the wetted structure

surface in the mean position.

fy=ipw /fs (br-+oInds

fy=ipw ffs (ot o)nds ”

where f, and f, are the force component in x and y

directions, respectively. S denotes the submerged

surface, and n, and n, the x- and y-component of the

normal vector. The moment can be evaluated as

]‘4: j/ p(nyrr —niTy>d8
S

where r,=z—-z, r,=y—y, and (z.y.) is the moment

(15)

center. When the complex potential is known, the wave
profile can be determined by

1o wt) = Re {26 (2, )6 (16)

Methods to determine the reflection and transmission

coefficients are reviewed in several literature. Carter
(2005) derived the equations to calculate the coefficients
by little modifying Chen at. al (2002) and Yueh and

Kuo (1993). The resulting reflection coefficient C; and

transmission coefficient Cr due to Carter (2005) are:

. :eim[_l i f Zd)pRcosh(k (y+d))dy]
1)
k: 0
=t | o coshlkltd)dy 09
where
no= B [+ ot )
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are the complex velocity potential ¢ (z,y)

¢r,. and ¢,

on [ and [,.

3. Formulation of Integral Equation

The direct boundary integral equation to solve the
prescribed boundary value problems is derived by applying
the Green’s theorem on the boundaries. The resulting
Fredholm integral equation of the second kind can be
written as,

ot [ 2

F+F
oG _ 1
+ f m( sz)cdeI Mc‘%df

The solid angle C in Eq. (20) is zero when the field point is

¢>111F+ f [—— —k G)MH (20)

outside the boundary or 2 in the fluid domain. When the
field point is located on the non-planar boundary, the solid
angle is computed using a special manner. The two
dimensional Green's function is:

1
G=-5-InR (1)

v/ (CII—.TI) +(y‘—g)

where R=

4. Formulation Spline Boundary Element
Method

Boundary surfaces can be modeled by distributing the
elements along the surfaces. Geometries of each element can
be represented by polynomial functions and thus the entire
boundary surfaces can be approximated by numbers of
spline elements. Within this element, physical variables are
The resulting
approximations on the spline element are written as:

interpolated using spline polynomials.

NS NS

x= ,Zle x, y= IZ:IN,y,- (22)
NS

o= 3 N0, 20 - 5N,

(23)
where (z;,y,).¢; .(8¢/0n); and N; are the coordinates,
velocity potential, normal velocity and shape function at the
j-th node on each element. NS is the number of nodes on
element.

The conventional higher order boundary element method
(HOBEM) due to Boo (2002) has significant advantage over
the constant boundary element method but the HOBEM

produces inherent error in calculating the velocity or
acceleration because those values are only interpolated
within the element. Thus, this method may not produce
continuous values of velocity or acceleration at the inter
elements even on the smooth surface. This difficulty can be
avoided by introducing a spline boundary element method
(Boo and Lee, 2006).

Fig. 2 depicts a spline element which can be used to model
a smooth surface. To drive the shape functions, we used the
constraints that the derivative between elements is 0.5 and

%1\@:1. A typical shape functions for this spline element

can be written as:

Nl(z)——gz +3%- —@

N =31 21241 (24)
Ny == S5+ 22+ Ly
N4(’Q)=_§3—'2_§2

where ( is the local coordinate defined on the element
as shown in Fig. 2 and it varies from 0 to 1. This
element is called as spline element type 0 (ET 0) for

convenience.

0 — e

N, N,

Fig. 2. Spline Element (ET 0)

Edges or corner can be modeled using a partially spline
element. For this, we can consider two different types
of element for the discontinuous boundary. Firstly, the
boundary with discontinuity on the left side can be
distributed by the partially spline element (ET I) as
shown in Fig. 3. The shape function for the ET I can
be derived below using the same constraints.

Ny (D)= £ -3 1+1

N3(§)=—;2+ % (5)

Ny = $32- 11
Secondly, the boundary with discontinuity on the right
side can be modeled by distributing other type of
partially spline element (ET II) as shown Fig. 4. The
shape functions for this element of ET II can be written

as:
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NV = 3= 31

Ng(g) = EZ‘*‘I
(26)

NV =30+ 4

ET1

v

N, N,

Fig. 4 Partially spline
element (ET II)

Fig. 3 Partially spline
element (ET 1)

By substituting the shape functions of Eq. (24), (25, or
(26) (20), the
formulated for the unknown value of ¢p. For instance

into Eqg. integral equation can be

the kernels in Eq. (20) can be descretized as:

4
[ os6dr =3[ NonG 1)1
. 700,

oG ; 3G
fr,»(pD‘é??dF :2; j(:rsN/‘pD;‘WU It
(27)
(?(DI N 4 3(1)1
| 65 “Z,f;rSNK 3a )G 1,
where
7 :\/(%)2“%)2 28)
dx _ 8 IN; dy _ 5 3N,
ETE R R E R (29)

5. Numerical Results and Discussions

5.1 Cylinder and Thin Plate in Infinite Fluid

Circular cylinder under the uniform flow with a
velocity U in the infinite fluid is firstly considered to
examine the numerical accuracy. The convergence of the
velocity potential is investigated using th RMS error

using

RMS = %_Nl\/ (Q)A'}\w‘—“Q)—N‘)Z

where ¢ A, and ¢ y, are the analytical and numerical

(30)

solution, respectively. The RMS error for the cylinder is
depicted in Fig. 5. Numerical error decreases drastically
as the number of elements on the surface increase. A
satisfactory results may be obtained with a total element
distribution of 28.
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Fig. 5 RMS error of velocity potential

for circular cylinder

As the 2nd example, we consider a flow past a thin flat
plate with length which is perpendicular to the stream
with uniform velocity U. The analytic solutions of
velocity potential for zero-thickness plate can be found
in several literatures. In the present modeling, a plate
with thickness ¢ is used instead of zero-thickness. The

RMS error of the potential jump between weather and
two cases of NE=10 and 20 is
compared in Fig. 6. Here, NE denotes the number of

lee sides for the

elements distributed on weather or lee side of the plate.
Here the total number of element used is 44 (each 20
on weather and lee sides, each 2 on the other two
sides). The error is gradually reduced by decreasing the
thickness of the plate. Also, the computed potential
jump along the surface is compared with the analytic
solution in Fig. 7. It is seen that the present SBEM
t/length=0.01 (NE=20) is

agreement with the analytic value except the tip of the

solution for in  excellent
plate. This implies that zero-thickness plate may be
approximated as a plate with thickness ¢ = 0.01 Xplate
length and with mesh density of plate length/20 on
each side. This information will be used in modeling
the breakwater in the following analysis.

H
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E
&
° r T 7T T 1717 1771
0 0010.020030040050060.070080.09 0.1
Hlength
Fig. 6 RMS error of potential jump on thin

plate
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Fig. 7 Comparison of potential jump along
the thin plate surface

5.2 C, and C; for horizontal submerged plate
A thin breakwater with length B is
horizontally under the free surface as depicted in Fig. 1.
Here, the free surface is chosen as ~5d < z £+ 5d, and
B/d=1.0 and h/d=0.2 are used. Using the previous
information of thin breakwater, the number of elements
used on the breakwater surface I, is 44. The fixed

placed

number of elements is also used as 100 on the bottom
boundary [} and 10 on each radiation boundaries I7,_
and Iy .

Convergence of the coefficients is investigated for the
cases of various mesh density on the free surface. In
Fig. &, the ¢ by the present method is compared with
the theory of Eigen function expansion due to Cho and
Kim (1998). Here the reflection coefficient Cj
calculated using Eq. (17). It can be seen that the

was

computed Cy is in good agreement with the theory
even with 8 elements/wavelength of L. However, Fig. 9

is shown the transmission coefficient Cr calculated

using Eq. {18) is highly dependent on the number of
element per wavelength and it converges as mesh
density reaches 20 elements/L. Thus, twenty elements
per wavelength are distributed on the free surface for
all the following calculations.
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Fig. 8 Convergence of reflection coefficient
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Fig. 9 Convergence of transmission coefficient

5.3 C, and C; for shallow water condition

Long surface waves incident on a submerged plate
with zero thickness are now considered here. Under the
assumption that wavelength L and breakwater length B
are large compared to the water depth d, Siew and
Hurley (1977) derived the equation to determined the
¢, and (4 using the matched asymptotic expansions as:

Cr= X{(Q_Z)I‘?W sin (—g:—)lf-/; - 2(—%)1/2(1 —cos (;}‘L’f - )} (31

= ol wB_ , wB(BY” 32
Cv--x{%[sm 7 + ) (g) ]} (32)

where,
X= 1/{2u(l—cosﬂ)+ @%H (1+p?) sinﬁ+2i(sin,8+ %Iﬁ)cosﬁ}
(33)

B=k,B 1t=+h/H, and b is the distance under the
breakwater to the sea bottom, which can be writtenas
b=4d—h—1 in the present modeling. To investigate
the shallow water case, we use the parameters of
B/d=4.0, h/d=0.2, t=0.001B.

In Fig. 10, the C; and Cr by SBEM are compared
with the theories of Eq. (31) and (32). Small difference
between the numerical and theoretical values is found
within the shallow water range of kd < 7/10, but the
discrepancy becomes This
difference at higher kd can be expected because the

large as kd increases.

theory may be valid in the range of the shallow water.
However, overall trend is vary similar to each other.
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Fig. 10 Reflection and transmission coefficient
for shallow water condition

5.3 Thickness Effect

Rectangular breakwaters with length B for four
different thickness are considered to investigate the
thickness effect on the reflection. The breakwater with
length ratio of B/d=1.0 is submerged at a depth of
h=0.2d. In Fig. 11, reflection coefficients for thickness
t=10.0015,0.01B, 0.18,0.28 are depicted. Difference
of the coefficients for t=0.0018 and t= 0.01] is
hardly seen, but it is observed that the coefficients
thickness Therefore, the
reflection coefficient depends on the thickness of the

breakwater for wide range of kd and as such, the

decrease as the increases.

thickness of the rectangular breakwater is an important
factor in modeling a breakwater. A similar result is
found in Kanoria et. al (1999).

t=0 001B

t=0.01B

— t=0.1B
t=0.2B

0.8

Cr

ked

Fig. 11 Reflection coefficient for various
thickness of the rectangular breakwater

5.4 Wave Forces Exerting on the Breakwater

Wave forces for the forgoing rectangular breakwater
are computed. The horizontal (surge) and uplift (heave)
forces normalized by pgBA are shown in Fig. 12 and
13. As expected, surge force is much smaller than heave
forces. It is seen that heave force for the smaller kd
than about 2 becomes larger as the thickness increase

while it becomes rather smaller when kd is greater

than 2.
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Jed

Fig. 12 Horizontal (surge) force on breakwater
for various thickness

Fy /oghL

Fig. 13 Vertical (heave) force on breakwater
for various thickness

6. Conclusion

An efficient spline boundary element scheme is newly
developed for water wave scattering of an incident
wave train on a submerged breakwater. In this scheme,
three different types of spline element are employed to
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model an entire boundary. Validation of the present
through the
comparing the

numerical

scheme is accomplished

experiments for various cases, by
numerical results with theories vailable in the literature.
Very efficient and accurate reflection and transmission
coefficients for thin horizontal breakwater are obtained.
It is found that the
rectangular breakwater is significantly affected by the
thickness thickness
increases. forces on the

breakwater for various thicknesses are also investigated.

reflecion coefficient for the
and becomes smaller as the

Horizontal and vertical
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