A Novel Separator Membrane for Safer Lithium-ion Rechargeable Batteries

  • Published : 2006.10.13

Abstract

In lithium-ion batteries, separator membrane's, main role is to physically isolate a cathode and an anode while maintaining rapid transport of ionic charge carriers during the passage of electric current. As far as battery safety is concerned, the electrical isolation of electrodes is most crucial since unexpected short-circuits across the membrane induces hot spots where thermal runaway may break out. Internal short-circuits are generally believed to occur by protrusions on the electrode surface either by unavoidable deposits of metallic impurities or by dendritic lithium growth during battery operation. Another cause is shrinkage of the separator membrane when exposed to heat. If separator membrane can be engineered to prevent the internal short-circuit, it will not be difficult to improve lithium-ion batteries' safety. Commonly the separators employed in lithium-ion batteries are made of polyethylene (PE) and/or polypropylene (PP). These materials have terrible limitations in preventing the fore-mentioned internal short-circuit between electrodes due to their poor dimensional stability and mechanical strength. In this study we have developed a novel separator membrane that possesses very high thermal and mechanical stability. The cells employing this separator provided noticeable safety improvement in the various abuse tests.

Keywords