Nanostructures in Thin Films of Block Copolymers

  • Russell Thomas P. (Department of Polymer Science and Engineering, University of Massachusetts) ;
  • Hawker Craig J. (Materials Research Laboratory, University of California)
  • Published : 2006.10.13

Abstract

As the size scale of features continue to shrink in devices, the use of self-assembly, i.e. a "bottom up" approach, for device fabrication becomes increasingly important. Yet, simple self-assembly alone will not be sufficient to meet the increasing demands place on the registry of structures, particularly nanostructured materials. Several criteria are key in the rapid advancement and technology transfer for self-assembling systems. Specifically, the assembly processes must be compatible with current $^{\circ}{\infty}top\;down^{\circ}{\pm}$ approaches, where standard photolithographic processes are used for device fabrication. Secondly, simple routes must be available to induce long-range order, in either two or three dimensions, in a rapid, robust and reliable manner. Thirdly, the in-plane orientation and, therefore, ordering of the structures, must be susceptible to a biasing by an external, macroscopic means in at least one, if not two directions, so that individual elements can be accessed in a reliable manner. Block copolymers, specifically block copolymers having a cylindrical microdomain morphology, are one such material that satisfy many, if not all, of the criteria that will be necessary for device fabrication. Here, we discuss several routes by which these versatile materials can be used to produce arrays of nanoscopic elements that have high aspect ratios (ideal for templating and scaffolding), that exhibit long-range order, that give access to multiple length scale structuring, and that are amenable to being biased by macroscopic features placed on a surface.

Keywords