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The Development of Accurate GPS Module Using Discrete-Time H« Filter
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Abstract — In this paper,

we present the traditional GPS Position-Velocity

(PV) model to apply for both

Discrete-Time Kalman Filter and Discrete-Time Hw Filter. The positioning algorithms of both filters are proposed for a
stand-alone low-cost GPS module to increase its accuracy. For disturbance cancellation, the Kalman Filter requires the
statistical information about process and measurement noises while the Hew Filter only requires that these noises are
bounded. Experiments show that with the same measurement data, He Filter gives us better positioning results compared

with Least-Squared method and Kalman Filter.
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1. INTRODUCTION

From the GPS receiver module, we obtain the raw
measurement data (satellites’ positions, satellites’ velocities,
pseudo-range and pseudo-rtange rate) required to compute
the receiver position and velocity. However, these
measurements are affected by several error sources such
as measurement errors at recerver (0.5-1m), Ephemeris
error (15-20m), Ionopheric delays (20-50m), Tropospheric
delays (2-20m), Multipath (3-5m),
(1-5m) and other errors (<lm)..

Satellite clock error
In summary, the total
inaccuracy introduced to GPS positioning is about 100m.
Although a part of these errors {(consist of ionospheric,
tropospheric and satellite clock bias) can be compensated
partially using the information in broadcasted Almanac
data, the remains still cause a big error. That is the
reason for implementing estimate algorithms such as
Least-squared, Extended Kalman Filter or He Filter.

The Kalman Filter filter when the
measurement noise and process noise are zero mean white
processes with known statistics. When there is significant

is the optimal

uncertainty in the power spectral density of the exogenous
signals a new measure of performance, referred to as Hew
-norm, is sometimes useful. In this paper, the He Filter

presented in [4] is applied to compare with the Kalman
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Kalman Filter, Hwo Filter, GPS, discrete-time system, algorithm

Filter and Original Least-Squared Algorithm. The structure
of this paper is as follow. The discrete-time state space
variable GPS model is described first; then the Kalman
Filter and Hw Filter Algorithm for that model; at the end
are experiment results and conclusion.

2. SYSTEM MODELLING
2.1 Process model
Assume that the receiver only moves with nearly
constant velocity, then the GPS dynamic process can be
modeled as PV model in which the velocity is a random
walk process, the acceleration and other disturbances are
considered as process noise.

[1] (1]
L] Le ]

Fig. 1. Integrated random walk mode] for GPS receiver.

process noise velocity position

Besides the dynamic of the receiver itself, we must
model the receiver clock error because it also distributes
to the system dynamic process. When modeled correctly,
the clock error can be solved and then it has no affect on
positioning accuracy. Here we use a typical 2-states
random-process to model the receiver clock error as in [2].

We define the receiver state-space variable included the
three dimensions ECEF (Earth Centered Earth Fixed)
positions and velocities combined with the receiver clock
bias and clock drift.
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Where X Y,

X, Y,,Z are the corresponding velocities; cft, ¢St are

Z. are ECEF positions of receiver;

receiver clock bias and clock drift (in m and m/s).
The overall dynamic equation:

x=Fx+w (2)
with
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Where uz, us, us, U7, ug are system driving noise.
The corresponding discrete-time dynamic equation of
the above differential equation is:

X = (ka +W, (4)

Where xx is the process state variable at time tx @ is
the transition matrix (relate xx to xx.1 in the absence of a
forcing function), wx is the system driving noise at time
tke1 due to the presence of the noise input during (tx, tx..)
interval.

The state transition matrix is given by:

[t A4 0 0 0 0 0 0]
01 00000 O
0 0 1 A4 O 0 0 O
Do ageFac|® © 0 1 0 0 00
00 0 0 1 A 0 0
000001 00
00 000 0 1 A (5)
0 0 00000 1]

22 Measurement model
With the state variable defined above, the receiver must
least four GPS
satellites: the pseudoranges and pseudorange-rates.
Pseudoranges are the distances from GPS satellites to

perform two measurements from at

the receiver computed by the receiver GPS module. The
equation relating the measurement of pseudoranges to the
receiver position is:

pi=\/(X,—Xi)2+(Y,—YI.)2+(Z,—Z,)2+c5t+vpi ®)

i=12 . nmn=>4

Where p; is the measured pseudorange from satellite i,
(X;YiZ) is position of satellites i, v, is pseudorange
measurement noise that affects p;

The equation relating pseudorange-rates to the receiver
velocity is:
(Xr “Xi)(Xr _Xi)+(Yr _Y:)(Y, —Yi)+(zr —Z,.)(Z, _Zi)

D=
JX-XY +(1,-1) +(2,-2.)

i

+edt+vy,

i=12 ..nmn=4 (7
Where D; is the pseudorange-rate from satellite i,
(X,Y.,2Z) is velocity of satelite i vm is

pseudorange-rate measurement noise that affect D;
In case of n satellites are tracked, we define the
measurement vector:

Z =[P| p: - p, D D Dn]T (8)
The linearized measurement equation is as follow:
Az =z, ~h(x)=HAx+v, ©)

Where Az=zk—z,: is the incremental quantity in state
variable, vk is the measurement noise vector (include
pseudorange and pseudorange-rate measurement noise), Hi
is the linearized measurement matrix as in [2].
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3. KALMAN FILTER & Ho FILTER ALGORITHM
We have the discrete-time
model for GPS system :
Xen =Dx, +w,
Az, = HAx +v, an,a2)
Both Kalman Filter and H Filter described in this paper
are used to solve state-space variable of the above

time-varying state-space

state-space model.

3.1 Kalman Filter Algorithm

To apply Kalman Filter and solve for xx.1, we assume
that wx and vk are zero mean independent white-noise
with the covariance matrices given by:

O =E (WA w )
R =E(vwy]) (13),04)
Where E denotes the expectation, Qx is the covariance
matrix of the process noise wyg, Rk is the covariance
matrix of the measurement noise vi.. The precise value of
Qqk and rk must be known to obtain the optimal solution
of Kalman Filter.
The Kalman Filter recursive equations are given below:
- Compute Kalman Gain:
-1
K, =P H] (H,P H] +R) (15)
- Update state estimate:
%=% +K,[z,-% a16)

- Compute error covariance for updated estimate:
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B =(I-KH,)F

an
- Project ahead:
X = QX 18)
R, =®RD" +Q 19)
21:+1 = h(j;n) (20)

To enter the Kalman Filter recursive loop, we must

provide it with the initial value z; (the initial state

vector), %z, (the initial predict measurement) and F; (the
initial These selections are very
important to Kalman Filter to assure its convergence and
some suggests can be found in [3].

error  covariance).

3.2 H« Filter Algorithm

Different from Kalman Filter, the H« Filter only
requires that the process noise and measurement noise be
bounded. The objective is to estimate xx that satisfy the

He Filter criterion:
DECEC
J(0) -2, + 5 Iw()

Where 7y is a pre-specified value; ILII

supJ = sup

A,
) 7 e

| +uv(k+1)

o &
represents a
vector norm; U Py, Q' R™' are matrices used in the
weighted norms in J, x(0) is the initial guesstimate.
The main He Filter equations are proposed in [4]. To
apply to our GPS system (10) and (11), we perform
linearizing and obtain the following equations:

0=(0"+HIR'H,) 22)

¢, =0-6HIR'H,® (23)
$,=6 (24)
$u=7U- O HR'H, 0+ O H{R"HLHR'H,® (55

¢22 = ¢12;

(26)
Pa=$B(I=4,B) #+6,  P(0)=0 @
The Ho Filter gain is computed as follow:
Kew=P HR" @8
The He Filter update equation:
LRES ANE J O - —5[+1] (29)
Where %in =% and %= h(i’:ﬂ) (30),(31)

Note that when y= 00, Py is the same as the Kalman
Filter error covariance matrix and the gain Ky.; is also the
same as the Kalman Filter gain.

4. EXPERIMENT RESULTS

To perform experiment, we fix the receiver’'s antenna at

an already known position in Ulsan University campus
(the 30 minutes average position coordinates from Novatel
GPS module). Using a low cost GPS module made by
Kiryung company, we collect raw measurement data as

input to our filters running on a computer. Results
between the filters are presented in Figure 2.
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Fig. 2. Experiment results

5. CONCLUSION
An application of Hw Filter for GPS system has been
developed and compared with original Least-Squared
method and Kalman Filter. The results show that the
result from Ho Filter is rather good. Especially in case
statistical
characteristic, the Ho Filter is a reasonable choice because

when we have no ideas about the noise

of its’ robustness and ease in implementation.
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