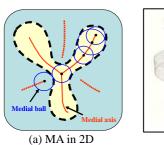
점데이터 샘플링 기법을 통한 솔리드 모델로부터의 미디얼 액시스 추출

*우 혁 제

경기공업대학 정밀기계시스템과

Medial Axis Extraction from Solid Models using Point Sampling Techniques


*H. Woo

Dept. of Precision Machinery Systems, KINST(Kyoung-gi Institute of Technology)

Key words: Medial axis(미디얼 액시스), Point sampling(점데이터 추출), Voronoi diagram (Voronoi 다이어그램)

1. 서론

많은 응용 분야에 있어서 때로는 어느 주어진 3 차원 솔리드 모델 상의 중심 축 또는 중심면을 구해야 할 경우 가 종종 발생한다. 전형적이고 단순한 기초(primitive) 형상 의 경우는 이러한 중립면 또는 중립 축을 계산하기가 그리 어렵지 않을 수 있으나 자유곡면 형상, 여러 형상이 조합 된 복잡한 모델의 경우 중립면을 정확히 계산하기에 어려 운 점이 많다. 따라서 본 연구에서는 이러한 중립면을 구 하는데에 있어 보다 정확한 중립면을 구하기 위해 특별한 점데이터 샘플링 방법을 이용하였다. 중립면 즉, 미디얼 액 시스(Medial axis)란 3 차원 또는 2 차원형상에 있어서 일종 의 뼈대와 같은 중심축을 의미하는데, 일반적으로 3 차원상 에 존재하는 곡면의 경우 곡면 위의 가장 가까운 점이 두 점이상 되는 점들의 집합체로 설명될 수 있다.[1-3]

(b) MA in 3D Fig. 1 Medial Axis(MA)

기존의 미디얼 액시스를 계산하기 위해 Voronoi 계산법 을 이용한 방법들은 근사화 날카로운 convex 모서리 또는

non-concave 꼭지점 등이 존재한 경우, 그 부분에 대한 완 벽한 미디얼 액시스의 계산은 불가능하다. 따라서 본 논문 에서는 입력 모델이 주어진 경우 형상 정보를 분석 활용하 여 Voronoi 계산법을 이용하더라도 완벽한 미디얼 액시스를 계산할 수 있도록 하는 점데이터 샘플링 방법을 제안하였 고 제안된 알고리즘의 수행 절차는 Fig. 2 와 같다.

Fig. 2. Overall process of the proposed algorithm

2. 기존 Voronoi 다이어그램을 이용한 방법의 문제점

Voronoi 다이어그램을 이용한 미디얼 액시스 추출 방법 [4]은 결국 Voronoi 면 또는 에지들 중 미디얼 액시스에 해 당되는 엔터티들 만을 추출하게 되는데 부드러운 곡면, 적 어도 C¹ 연속성을 만족하는 곡면들로 이루어진 경우에는 문 제가 없으나 Fig. 3 과 같이 일정 각으로 이루어진 두 선분 이 만나는 형상과 같은 경우 Voronoi 다이어그램으로 부터 추출된 미디얼 액시스가 두 선분이 만나는 꼭지점을 지나 지 않고 그 앞에서 멈추게 된다. 따라서 본 연구에서는 이 러한 문제점을 극복하고자 입력 파일인 솔리드 모델로 부 터 형상 정보를 먼저 분석하고 이를 이용하여 완벽한 미디 얼 액시스를 추출하려는 노력이 필요하다.

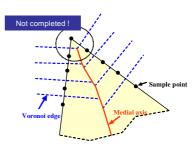
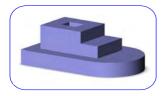


Fig. 3. Medial axis by Voronoi computation


3. 점데이터 샘플링

솔리드 모델 파일로부터 convex 및 concave 모서리, 꼭 지점들을 자동으로 구별하여 추출하고, 해당 엔터티에 대 해서는 미디얼 액시스 생성 조건에 맞도록 점데이터를 추 출하는 방법을 기술하였다.

3.1 솔리드 모델의 형상 분석

먼저 일반 상용 CAD 소프트웨어에서 생성된 솔리드 모 델로부터 미디얼 액시스 계산에 적합한 점데이터를 샘플링 하기 위해 다음과 같은 절차를 통해 Fig. 4 와 같이 convex/concave 모서리, 꼭지점, 내부 곡면들을 자동 분석하 게 된다.

- Step 1. 입력된 모델로 부터의 모서리, 꼭지점, 면들을 추 출함.
- Step 2. 추출된 모서리들 중 C1 연속성으로 연결 모서리 는 동일 그룹으로 구분하여 리스트에 저장됨.
- Step 3. 구분된 모서리들의 형태 분석 (Concave/Convex)
- Step 4. 추출된 꼭지점의 형태 구분 (Concave/non-concave)

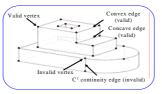


Fig. 4. Vertex, edge and surface type recognition in solid models

3.2 점데이터 샘플링

형상 분석이 마쳐지면 이를 기반으로 다음 절차에 따른 점데이터 샘플링 단계를 거친다.

3.2.1 내부면에 대한 점데이터 추출

면저 경계 모서리와 접하지 않은 내부 면에 대해서는 Fig. 5(a)와 같이 ϵ -샘플링 조건에 맞는 임의의 점들을 추출한다. 따라서 가장 쉬운 방법으로 NURB 곡면식에서의 u-v parametric value 값을 조절하여 경계 모서리로부터 L_1 만큼 떨어져 있는 점데이터를 조밀하게 추출하고 점들간의 밀도를 균일한 형태로 만들기 위해 일정 공간거리를 유지하며 점데이터를 샘플링 하는 스페이스 샘플링(space sampling) 기법을 사용하여 점데이터를 재추출하게 된다.

3.2.2 Convex 모서리영역에서의 점데이터 추출

Figure 5(b)와 같이 두 면 f,과 f 에 접한 Convex 모서리, e 가 존재할 때 먼저 e 상에 일정 거리를 유지한 충분히 조 밀한 점들을 추출하고, 이 점들을 중심으로 e 와 수직면상에 있고 일정거리에 있는 두 점들을 추출한다.

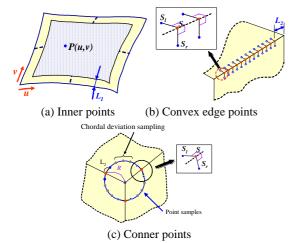


Fig. 5. Point sampling on solid models

3.2.3 Non-concave 꼭지점 영역에서의 점데이터 추출

본 연구에서는 Concave 모서리와 접하지 않은 꼭지점을 non-concave 꼭지점이라 정의하였고, 이 꼭지점의 경우 모든 모서리들의 medial axis 가 연결되게 된다. 따라서 이러한 영역에 대해서도 미디얼 액시스 추출을 위해 일정 규칙을 가지고 점데이터 샘플링이 수행되는데 그림 5(c)와 같은 모서리의 경우 convex 모서리와 같은 규칙으로 샘플링이 수행되게 된다.

4. 미디얼 액시스 추출

4.1 Voronoi 다이어그램 기반 미디얼 액시스

임의의 곡면을 대표하는 점데이터가 존재할 때 그 곡면 형상의 미디얼 액시스는 점데이터로부터 계산된 Voronoi facet 에 근사화되어 포함되며, 곡면으로부터 많이 기울어진 또는 길이가 상대적으로 긴 Delaunay 모서리 와 dual 관계에 있는 Voronoi facet 이 미디얼 액시스에 근접 된다. 따라서 점데이터로부터 미디얼 액시스를 계산하기 위해 각도 및 길이 비교가 필요한데 이를 위하여 본 연구에서는 Dey와 Zhao[6]가 제안한 각도 조건식(angle condition) 및 비율조건식(ratio condition)을 사용하였다.

5. 적용 예제

제안된 알고리즘은 비쥬얼 C++과 Parasolid 커널을 통해 구현되었고 Voronoi 및 Delaunay 계산을 위해 CGAL[5] 함수 를 이용하였다. Fig. 6은 chuck 라 불리는 형상에 대해 적용 된 예제를 보여주고 있다.

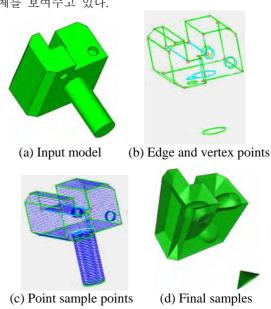


Fig. 6. Medial axis of Chuck model

6. 결론

본 연구에서는 날카로운 모서리 및 꼭지점을 포함하고 있는 솔리드 모델에 대해 미디얼 액시스를 추출하는 방법에 대해 제안하였다. 이러한 미디얼 액시스는 FEM 메쉬생성, 3 차원 형상 변형, 특징 형상 추출 등에 이용될 수 있을 것으로 기대된다.

참고문헌

- Amenta, N., Bern, M. and Eppstein, D., "The crust and the beta-skeleton: combinatorial curve reconstruction," Graphical Models and Image Processing, pp.125-135, 1998.
- Attali, D. and Montanvert, A. "Computing and simplifying 2D and 3D continuous skeletons," Computer Vision and Image Understanding, pp. 261-273, 1997.
- Dey, T. K, Woo, H. and Zhao, W, "Approximate medial axis for CAD models," Solid Modeling and Applications, pp. 280-285, 2003
- Dey, T. K and Zhao, W., "Approximate medial axis as a Voronoi subcomplex," Computer Aided Design, Vol. 36, Issue 2, pp.195—202, 2003.
- 5. www.cgal.org