40,000rpm

* 1, 2, 2, 1

Selection of Bearing Position to Improve 40,000rpm Spindle Stiffness

*J. S. Lim¹, C. M. Lee², W. J. Chung², J. H. Lee¹ KIMM, ² Dept. of Mech. Design & Manufacturing, Changwon Univ.

Key words: Spindle, Stiffness, Bearing

Table 1

가 , 가 ³

가 ⁴.

40,000rpm Fig. 1

(ATC) 가 (gripping force) H . . (drawbar) 가 . .

.

. Fig. 2
ANSYS

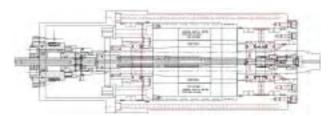


Fig. 1 The schematic of 24,000rpm spindle system

Fig. 2 Mesh of high-speed spindle for FEM analysis

Table 1 Material properties of each part

	· · · · · · · · · · · · · · · · · · ·	- F	I
Part name	E(GPa)	Density (g/cm³)	Poisson's ratio
Spindle	205	7.817	0.3
Drawbar	205	7.817	0.3
Tool shank	205	10.311	0.3
Rotor	40.3	7.817	0.3

3.

가 , 4. 가 가 가 .

35mm

Fig. 3
Fig. 3
. Table 2

. A, B, C . A , B A

rotor) .

437

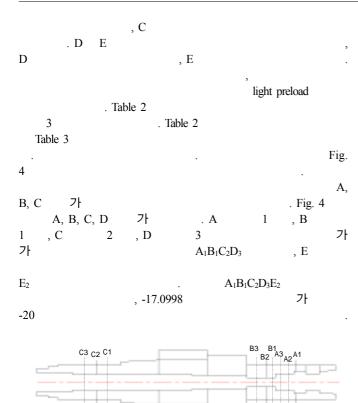


Fig. 3 Each level of front bearings and rear bearing

Table 2 Level value of each parameter

A[mm]	B[mm]	C[mm]	D[N/mm]	E[N/mm]
41	63	230.83	11419	8546
46	71	248	24853	18640
51	85	264	38287	28716

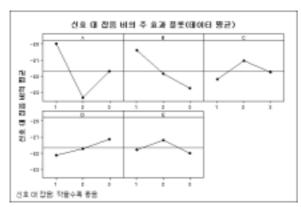


Fig. 4 Main effect plot of signal to noise about each condition

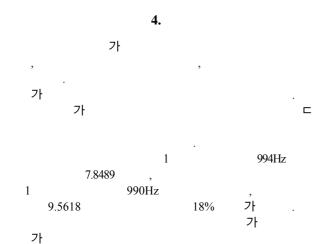


Table 3 Design of Taguchi Method and the results of each experiment

Table 3	Design	-01	ruguem	11100	una unc	results of each	CAPCITICIT
No.	A	В	C	D	E	1st Mode[Hz]	Dist.
1	1	1	1	1	1	669.91	6.4307
2	1	1	1	1	2	938.33	6.9801
3	1	1	1	1	3	1108.2	8.4854
4	1	2	2	2	1	734.97	9.1791
5	1	2	2	2	2	993.8	7.8489
6	1	2	2	2	3	1138.6	7.9983
7	1	3	3	3	1	888.85	13.473
8	1	3	3	3	2	1057.9	10.422
9	1	3	3	3	3	1175.8	11.334
10	2	1	2	3	1	725.37	10.769
11	2	1	2	3	2	986.92	11.453
12	2	1	2	3	3	1128.1	11.478
13	2	2	3	1	1	730.34	3.1284
14	2	2	3	1	2	831.28	24.076
15	2	2	3	1	3	847.06	28.213
16	2	3	1	2	1	705.2	13.386
17	2	3	1	2	2	971.76	18.027
18	2	3	1	2	3	1110.5	38.197
19	3	1	3	2	1	751.06	13.791
20	3	1	3	2	2	969.18	9.541
21	3	1	3	2	3	1070.1	8.87
22	3	2	1	3	1	878.59	13.404
23	3	2	1	3	2	960.85	12.666
24	3	2	1	3	3	1138.9	16.472
25	3	3	2	1	1	762.41	14.112
26	3	3	2	1	2	1028.5	14.354
27	3	3	2	1	3	1184.4	19.077

[RTI04-01-03]

- 1. Dae-Bong Choi, Jeong-Jun Jo and Seok-Il Kim, "Dynamic Characteristics of Spindle with a Built-in Motor", J. KSPE, 11, 3, 184-190, 1994
- Seok-Il Kim, Jae-Wan Jo, Won-Jae Lee, "Static/Dynamic/Thermal Characteristics Analysis of a High-Speed Spindle System with 50,000rpm", KSMTE, Spring Conference, 494-499, 2003.
- Chan-Hong Lee, Hu-Sang Lee, "Static and Dynamic Weak Point Analysis of Spindle Systems Using Bending Curve", KSPE, 15, 12, 188-193, 1998.
- Chan-Hong Lee, Chun-Hong Park, Hu-Sang Lee, "The Contribution of Spindle Parts to Static, Dynamic Stiffness and Design Improvement", KSPE, Autumn Conference, 985-988, 2002.
- 5. , , , , ," 7\ ", ,180, 139-146, 2006.