가

가

Optimal Design of the Spindle Housing Considering the Thermo-mechanical Behavior

S.M.Kim, S.K.Lee*

* Dept. Mechatronics, Gwangju Institute of Science and Technology

Key words: Spindle-bearing system, Thermo-mechanical behavior, Thermal displacement, Parameter optimization

1.
7t
,
,
,

-Initial configuration data
-Initial guess for design variables

-Initial guess for design variables

-Initial guess for design parameters

design parameters

design parameters

f_i({x})

Optimization module

Optimum design parameters

f_i({x})

Objective function
(cost function)

3.

Fig. 2 Optimization procedure of the thermo-mechanical spindle bearing system

2

2. - -

,
,
,
,

· 2
· ,
,
,
,

3

Heat transfer Contact pressure

(Thermal contact resistance)

Thermal deformation (clearance change)

Friction moment Preload (Bearing Internal pressure)

Fig. 1 Closed-loop of the spindle-bearing system

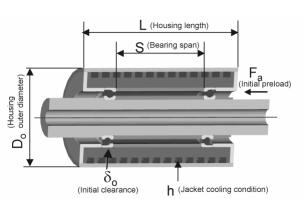


Fig. 3 Design parameter diagram

Table 1 Housing design parameters	Table	Housing design	n parameters
-----------------------------------	-------	----------------	--------------

Design parameter	Abbreviatio n	Meaning in spindle housing design	
parameter		acoigii	
X ₁	Tc	Jacket coolant temperature	
X_2	Fa	Initial preload	
X ₃	δ_{\circ}	Initial clearance between housing and bearing outer race	
X ₄	L	Housing length	
X ₅	D _o	Housing outer diameter	
X 6	s	Bearing span	

4 1

$$g_{d_a} = \frac{(d_a)_{\text{max}}}{(d_a)_{\text{steadystate}}}, \quad g_{F_a} = \frac{(F_a)_{\text{max}}}{(F_a)_{\text{steadystate}}}$$
 (1)

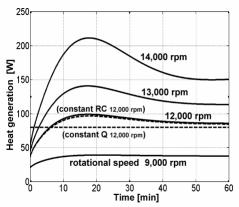


Fig. 4 Heat generation change according to rotational speed

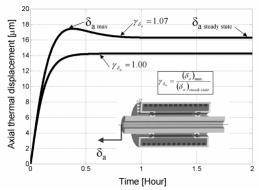


Fig. 5 Fluctuation of axial thermal displacement

$$\boldsymbol{d}_{a_{total}} = u_0 + \widetilde{\boldsymbol{u}}^T \widetilde{\boldsymbol{x}} + \widetilde{\boldsymbol{x}}^T \boldsymbol{U} \ \widetilde{\boldsymbol{x}}$$
 (2)

$$F_{a_{increase}} = f_0 + \widetilde{f}^T \widetilde{x} + \widetilde{x}^T F \ \widetilde{x} \le 100 \ [N] \quad (3)$$

$$\mathbf{g}_{F_a} = F_{a_{lincrease} \ min} = g_2 = g_0 + \widetilde{g}^T \widetilde{x} + \widetilde{x}^T G \ \widetilde{x} \le 1.05$$
 (4)

4.3
2 , ,

·

30%

Table 2 Optimization of spindle housing design parameters : Numerical example

Design parameters	Range	Initial value	Optimized value
X₁ (T₀: Jacket coolant temperature)	$0 \leq x_1 \leq 100$	20 °C	12.5 °C
X ₂ (F _a : Initial preload)	50 ≤ x ₂ ≤ 400	125 N	50.5 N
X₃ (δ₀∶Initial clearance)	10 ≤ x ₃ ≤ 30	20 μm	18.9 μm
X ₄ (L : Housing length)	$200 \leq x_4 \leq 350$	275 mm	271 mm
X ₅ (D₀: Housing outer diameter)	100 ≤ x ₅ ≤ 350	250 mm	101 mm
X ₆ (S∶Bearing Span)	50 ≤ x ₆ ≤ 100	75 mm	71.7 mm

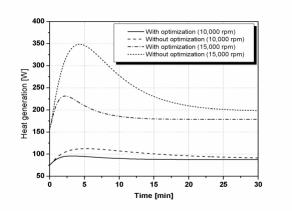


Fig.6 Optimization result comparison for heat generation

5.

- Kim,S.M., "A Study on Optimal Housing Design and Compliance Control of a Spindle Bearing System on the basis of Thermo-Elastic Concept, PhD dissertation of GIST, 2002
- Kim,S.M., Lee, S.K., "Prediction of Thermo-elastic behavior in Spindle Bearing System Considering Bearing Surroundings, Int.J.MachineTools and Manufacture, 41, 809-831(2001).