성인 대퇴골두 제 1압박 골소주군의 미세구조와 생역학적 특성의 상관관계 및 유한요소해석법의 유용성 평가

*백명현, 원예연, 최문권, 윤태봉 아주대학교 정형외과학교실

Evaluation of the Usefulness of Finite Element Analysis and Statistical Correlation of Micro-structural and Biomechanical Property of the Primary Compressive Trabecular System In Adult Femur

*M. H. Baek, Y. Y. Won, W. Q. Cui, T. B. Yun Dept. of Orthop. Surg., Ajou Univ. Hosp.

Key words: Primary compressive trabecular system, Biomechanical property, Micro-structural property, Finite element analysis, Micro-CT, Morphometry index

1. 서론

해면골 미세구조 특성(micro-structural property)과 생역학적 특성(biomechanical property)을 분석하는 것은 골절위험(fracture risk)을 평가하는데 있어서 골밀도 분석과 더불어 중요한 인자이 다.[1] 2001년 미국국립보건원(NIH, national institute of health) 에서는 골 강도(bone strength)를 보다 정확하게 예측하기 위해서 는 골량(bone quantity)과 골질(bone quality)을 모두 분석해야만 가능하다고 보고하였다.[2]

본 연구에서 분석하고자 하는 제 1압박 골소주군(primary compressive trabecular system)은 사람이 직립보행을 함에 있어서 수명이 다할 때까지 이 패턴을 유지하고 있으며(Fig. 1), 끊임없이 그 환경에 순응적 적응(adaptive remodeling)을 한다. 따라서이 패턴의 미세구조 특성(micro-structural property) 및 생역학적 특성(biomechanical property)의 분석은 중요하다.

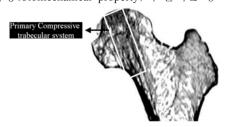
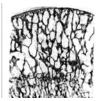


Fig. 1 Primary compressive trabecular system of the proximal femur 본 연구에서는 성인 대퇴골두의 제 1압박 골소주 군에서 미세 구조를 대변하는 형태학적 특성과 생역학적 특성을 분석함으로서 다음과 같은 두 가지를 얻고자 한다. 첫째, 각각의 형태학적지수(histomorphometry index)와 생역학적 특성과의 상관관계(statistical correlation)를 구하고, 둘째, 유한요소해석법에 의한결과 값과 만능재료시험기에 의한결과 값을 비교함으로써 유한요소해석법의 유용성을 평가하고자 한다.

2. 재료 및 방법

2.1 샘플의 제작


대퇴골두 샘플은 본원에서 2002년 3월 ~ 2004년 2월 까지 대퇴경부 골절이 발생하여 인공관절 전치환술을 시행한 환자의 11례(Age; 67.6 ± 9.4 year)와 의학 해부용 사체(cadaver)에서 10례(Age; 54.8 ± 1.0 year)를 획득하였다. 획득된 대퇴골두 샘플은 지름이 20 ㎜인 원통형 톱 및 탁상용 드릴을 이용하여 제 1압박 골소주 군의 전상부(superior)에서 후하부(inferior)까지 관통하여 지름이 약 19 ㎜ 인 원통형 샘플을 제작하였다.

2.2 미세단충촬영 및 미세구조 특성의 분석

모든 대퇴골두 해면골 샘플은 미세단층촬영기(μ-CT, mi-cro-computed tomoraphy, SKYSCAN, Antwerp, Belgium)를 이용하여 촬영하였다. 해상도는(spatial resolution)는 21.31μm x 21.31

மm 로 설정하여 TomoNT (SKYSCAN, Belgium) 소프트웨어를 이용하여 2차원 미세영상을 Fig. 2와 같이 얻을 수 있었다.

(a) Cross section image

(b) Sagittal image

Fig. 2 2D micro-images of the primary compressive trabecular system 2차원 미세영상은 256회색조(gray scale)를 바탕으로 모든 샘플에 동일한 감쇠계수(0.552~0.17)를 사용하였으며, 3차원 영상은 2차원 미세영상을 바탕으로 성장판(growth plate)을 중심으로 지름 6.33 ㎜, 높이 5.00 ㎜의 동일한 위치에서 관심체적(VOI, volume of interest)을 선택하여 3차원 원통형 모델을 생성하였다. 미세구조 특성을 나타내는 형태학적 지수(histomorphometry index)는 ANT (SKYSCAN, Belgium) 소프트 웨어를 이용하여구하였다.

2.3 유한요소모델의 생성 및 해석

유한요소모델(FEM, finite element model)은 2차원 영상을 바탕으로 BIONIX (CANTIBIO, Suwon, Korea) 소프트 웨어를 사용하여 요소의 크기(element size)가 63.93 년 8절점 정육방형 요소 (8-nodel hexahedron element)를 생성 후, 유한요소해석법에 적용하여 가상실험을 수행하였다. 모든 요소의 모델은 등방성 (isotropic)이며 선형탄성(linear elastic)으로 가정했고, 영률(E, Young's modulus)과 포아송 비(ゥ, Poisson's ratio)는 문헌을 참고하여 각각 1 GPa과0.3을 적용하였다.[3] 유한요소모델의 크기는 지름 6.33 ㎜, 높이 5.00 ㎜를 생성하였다(Fig. 3 (a)).

(a) Hexahedron mesh model (b) Result of Finite element analysis Fig. 3 FE-model and FE-analysis of the primary compressive trabecular bone

유한요소해석법(FEA, finite element analysis) 은 ANSYS 9.0 (ANSYS, Inc)을 이용하여 제 1압박 골소주군의 항복응력(σ_y , yield stress)을 구하였다(Fig. 3 (b)).

2.4 압축실험(compressive test)

미세단층촬영기에 의해서 촬영된 모든 샘플은 만능재료시험 기(INSTRON 8501, Instron Corp., US)를 이용하여 실온(room temperature)에서 압축실험을 수행하였다. 변위율(displacement rate)은 1 mm/min을 적용했으며[4], 샘플의 양 끝단에서 발생되는 마찰을 최소화하기 위해서 샘플의 양끝의 접촉면에 두께가약 10 mm 인 플라스틱 판을 고정하였다. 모든 샘플은 파단 될때 까지 압축하여 항복응력(σ_y , yield stress)을 구했다.

2.5 통계분석(Statistic analysis)

대퇴골두 제 1압박 골소주군 샘플의 형태학적 지수와 생역학적 특성과의 상관관계 및 유한요소해석법과 만능재료시험기의 통계적 유의성을 검토하였다. 모든 통계분석은 SPSS ver. 10.0을 사용하여 Pearson correlation analysis 방법을 사용하였다.

3. 결론

3.1 미세구조 특성의 분석 결과

형태학적 지수에 의한 미세구조 특성의 분석 결과는 Table 1에 정리하였다.

Table 1 Morphometry indices

	Tb.Th (mm)	Tb.Sp (mm)	BS/BV (1/mm)	BV/TV (%)	Tb.N
AVER	0.168	0.312	10.923	33.757	2.257
STDEV	0.025	0.154	1.975	9.552	0.639

3.2 생역학적 특성의 분석 결과(FEA)

유한요소해석법은 상용 프로그램인 ANSYS 9.0을 이용하여 샘플의 하부를 고정하고 상부에 1%의 변형율을 가하여 항복응력을 구하였다. 항복응력 값은 13.039 MPa 이었다.

3.3 생역학적 특성의 분석 결과(Instron)

만능재료시험기에 의한 분석 결과는 유한요소해석과 동일하게 하부를 고정하고 상부에 압축을 가함으로써 항복응력을 구하였다. 항복응력은 13.058 MPa 이었다.

3.4 형태학적 지수와 생역학적 특성의 통계분석 결과

형태학적 지수와 생역학적 특성의 상관관계를 구하기 위해서 각각의 형태학적 지수와 생역학적 특성의 결과를 통계 분석하였다(Table 2). 각각의 형태학적 지수와 유한요소해석법(항복응력)의 통계분석은 Tb.Sp, BS/BV 그리고 Tb.N는 매우 유의했으며, Tb.Th는 유의한 상관관계를 나타냈다. 만능재료시험기(항복응력)는 Tb.Sp, BS/BV, BV/TV 그리고 Tb.N는 유의한 상관관계를 보였으며, Tb.Th는 통계적 유의성이 없었다.

3.5 유한요소해석 결과와 만능재료시험기의 통계분석 결과 유한요소해석법과 만능재료시험기의 항복응력은 *P*-값이 0.03으로 유의한 결과를 보였다(Fig. 4).

Table 2 Statistical analysis of biomechanical test using FEA and Instron

P value	Tb.Th	Tb.Sp	BS/BV	BV/TV	Tb.N
FEA(σ _y)	0.61 [†]	0.79 [±]	0.76 [±]	0.96 [±]	0.79 [±]
Instron(σ_v)	0.39	0.69 †	0.53 †	0.71 †	0.62

Where and indicate that significant † and [±] very significant, respectively



Fig. 4 Linear regression relationship between FEA and Instron. The stress calculated from the finite element analysis was in good agreement (P= 0.03) with the stress measured by Instron.

4. 고찰

사람 대퇴골두의 제 1압박 골소주군에서 미세구조 특성과 생역학적 특성을 분석하여 상관관계를 구하고, 유한요소해석법 과 만능재료시험기의 결과치를 비교함으로써 유한요소해석의 유용성을 평가하였다. 제 1압박 골소주군에서 형태학적 지수와 유한요소해석법과의 상관관계는 Tb.Th, Tb.Sp, S/V, BV/TV 그리 고 Tb.N가 매우 중요하게 분석된 반면, 만능재료시험기와 비교 에서는 Tb.Sp, BS/BV, BV/TV 그리고 Tb.N에서 의미있는 상관관 계를 보였고, Tb.Th는 통계적 의미가 없었다. 이와 같이 유한요 소해석법과 만능재료시험기의 결과가 다르게 나타나는 이유는 van Rietbergen 등이 말한 것과 같이 다음과 같은 두 가지 요인에서 찾을 수 있다.[5] 첫째, 대퇴골두의 제 1압박 골소주군 해면골을 원통형 톱날을 이용해서 떼어내는 과정에서, 톱질(sawing)에 의해 발생되는 열 때문에 변형될 수 있는 샘플의 원주 둘레 부위를 제거하고, 컴퓨터 가상실험에서 메모리의 제한으로 인해 서 관심체적(VOI)을 작게 설정하고 유한요소해석법을 수행함으 로써 발생하는 오차가 한 원인이겠고 둘째, 샘플을 제작하는 과정에서 위, 아래의 단면이 평평하지 못함으로써 변형률이 과대하게 분석될 수 있다는 것도 한 원인으로 생각된다.

유한요소해석법의 결과 값과 만능재료시험기의 결과 값의 통계분석에서 P값이 0.03으로 유의하게 분석되었다. 이 결과는 유한요소해석법이 성인 대퇴골두의 제1압박골소주군의 생역학 적 특성을 분석하는데 있어서 유용한 방법이라는 사실을 뒷받침 해주는 결과이다.

추후의 연구에서는 앞서 언급한 오차 발생의 원인을 줄인다면 보다 정확한 결과를 얻을 수 있으리라 사료된다.

5. 결론

유한요소해석법은 형태학적 지수와의 통계적 상관관계가 만능재료시험기 보다 통계적으로 더 유의한 결과를 나타냈다. 이는 유한요소해석법이 성인 제 1압박 골소주군에서 미세구조특성을 더 잘 반영한다는 것을 증명한다. 그리고 유한요소해석법은 만능재료시험기와 통계적으로 유의한 결과를 나타냄으로써성인 대퇴골두 제 1압박 골소주군의 비침습적 분석(non-invasive analysis)에 유용한 도구라 사료된다.

참고문헌

- Lssever, AS., Vieth, V., Lotter, A., Meier, N., Laib, A., Newitt, D., Majumdar, S. and Link, TM., "Local Differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT," Academic Radiology, Vol. 9, No. 12, pp. 1395-1406, 2002.
- 2. NIH Consensus Development Panel on Osteoporosis: Prevention, Diagnosis, and Therapy, JMMA, Vol. 285, No. 6, pp. 785-795, 2001.
- 3. van Rietbergen, B., Weinans, H., Huiskes, R. and Odgaard, A., "A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models," J Biomech, Vol. 28, No. 1, pp. 69-81, 1995.
- 4. Ladd, AJ., Kinney, JH., Haupt, DL. and Goldstein, SA., "Finite-element modeling of trabecular bone: Comparison with mechanical testing and determination of tissue modulus," J Orthop Res., Vol. 16, No. 5, pp. 622-628, 2005.
- van Rietbergen, B., Ulrich, D., Pistoia, W., Huiskes, R. and Ruegsegger, P., "Trabecular bone ultimate stress can be predicted form large-scale FE-analyses," 11th Conference of the ESB, France, Toulouse, 1998.