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1. Introduction 
 

Nanoscaled WC grains in a cobalt matrix may enable 
simultaneous increases in both hardness and toughness [1]; 
however, appropriate processing techniques to produce such 
material are generally lacking. In this study, a unified 
modeling and simulation tool has been developed to produce 
maps of sintering pathways from nanocrystalline WC 
powder to sintered nano-structured WC-Co compacts. This 
tool includes die compaction, grain growth, densification, 
sensitivity analysis, and optimization. 

 
 

2. Experimental and Results 
 

Die pressing was used as the method of compaction. For 
developing the die-compaction models, right cylindrical 
compacts were made from the two powders at compaction 
pressures ranging from 50 to 600 MPa. One is a standard 
powder (Powder S, WC-10Co, D50 = 480 nm, Kennametal, 
Inc.), the other one is a nano-crystalline powder (Powder N, 
WC-12Co-1TiC-3TaC, D50 = 188 nm, average crystallite 
size of 54 nm, Inframet, Inc.) with TiC and TaC as grain 
growth inhibitors. 

All sintering runs were performed using an Anter 
Laboratories UnithermTM model #1161 vertical tube 
dilatometer. Three different heating rates were used to obtain 
master sintering curves (MSCs). 

 
 

3. Modeling, Sensitivity Analysis and Optimization 
 

We elected to use a conventional constitutive model for 
die compaction proposed by Shima and Oyane based on 
uniaxial compression tests [2]: 
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where q and p are the effective stress and hydrostatic 
pressure, ρ is the relative density, σm is the flow stress of the 
matrix material, and δ is a material parameter. 

The classical model [3] is applied for interface-controlled 
grain growth: 
 

 ⎟
⎠

⎞
⎜
⎝

⎛−=
RT
Q

G
K

dt
dG Gexp0  (2) 

 
where G is the grain size and K0 is the associated 
preexponential factor. 

The master sintering curve (MSC), as defined by Johnson 
[4], is based on the concept of the work-of-sintering Θρ [5]. 
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The activation energy Qρ for the sintering system is 

determined by minimizing the error between the 
experimental data and the model [5]. It has been shown [6] 
that a sigmoid function provides a good fit between the 
relative sintered density and the natural logarithm of lnΘρ. 
The sigmoid equation used to define the MSC is 
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where Ψ is the densification parameter, ρο is the relative 
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density at the start of the sintering experiment, and a and b 
are constants defining the curve. 

 
 

4. Results and discussion 
 

Fig. 1 shows the consolidation behavior of WC-Co during 
die compaction. Powder S is much more difficult to press 
than powder N. From the simulation results, the final density 
distribution for Powder S is much wider than that for 
Powder N. 

As shown in Fig. 2, the grain growth for Powder S is 
more sensitive to compaction pressure than powder N 
because of greater agglomeration of the smaller particles. 
The crystallite size data do not work for the grain growth 
model. It is noted that a role of smaller particle is to reduce 
sintering temperature and/or to activation energy not to 
directly reduce final grain size. 

 

 
Fig. 1. Density vs. pressure plot for die compaction. The 
density is relative to the pycnometer density of the 
powder/binder mixture. 
 

 
Fig. 2. Mater sintering curve for grain growth. 

 
Fig. 3 shows MSC of densification for both powders. 

Densification in the region of 1100-1310 °C is much more 
sensitive to temperature than in the region below 1100 °C 
for Powder N due to the effect of the grain growth 
inhibitors. 

Fig. 4 shows the minimum grain size for a given target 
density for Powder N. It is noted that Powder S cannot reach 
a density of > 90 % during solid-state sintering only. From 
the optimization results, the minimum grain size that  

can be achieved at a sintered density of 97 % of theoretical 
is 332 nm with a compaction pressure of 565 MPa. This 
value is 1.8 times larger than the initial grain size. Roughly 
saying, a WC powder with a D50 < 50 nm is required in 
order to obtain nano-structured WC-Co with a sintered grain 
size of < 100 nm and a density of > 97 % through 
conventional sintering technology. 

 

 
Fig. 3. Master sintering curve for densification. 

 
 

 
Fig. 4. Minimum grain size for a given sintered density. 

 
 

5. Summary 
 

In this study, we developed modeling and simulation tools 
for assessment and optimization of nano-structured sintered 
W-Co compacts. A nano-crystalline WC-Co powder with 
grain growth inhibitors and a crystallite size of 54 nm is 
unable to maintain a sintered grain size below 200 nm with 
conventional sintering. The model predicts that a powder 
with discrete particles < 50 nm is needed. 
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