

Preparation and Properties Study of Cu-MoSi₂ Composites

Xiaoou Yi^{1,a}, Weihao Xiong^{1,b}, Jian Li^{2,c}

¹ School of Materials Science and Technology, Huazhong University of Science and Technology, P.R.China; ² College of Material Science and Engineering, Central South University, P.R.China ^aradiumyi@sina.com.cn, ^bwhxiong@mail.hust.edu.cn, ^cziliao2000@126.com.cn

Abstract

The particulate strengthened Cu-MoSi₂ composites were prepared by a PM process to develop novel copper based composites with reasonable strength, high thermal conductivity and low thermal expansion coefficient. Microstructure of the composites was investigated by SEM; the tensile strength, elongation, thermal conductivity and thermal expansion coefficient (CTE) of the composites were examined. A comparative analysis of mechanical and thermal properties of various Cu-matrix composites currently in use was given and the strengthening mechanisms for the Cu-MoSi₂ composites were discussed.

Keywords : particulate strengthening, Cu-MoSi2 composites, thermal properties

1. Introduction

R&D efforts on advanced thermal materials are on a fast move, as critical heat dissipation problems keep arising from fields like the packaging of semiconductors and developments on high power devices. Cu-W and Cu-Mo allovs have been widely used as heat sink materials^[1]. For higher performance demand, Cu-based composite reinforced by SiC^[2] particles and carbon fiber have been developed because of their superior thermal property. In addition, some intermetallic compounds are also potential candidate reinforcements^[3] in Cu-based composites developed for thermal management applications^[4] at higher temperatures because of their excellent oxidation-resistance and very good electric and thermal conductivity. The objective of this paper is to prepare Cu-MoSi₂ composites and characterize their microstructure and properties. On the basis of experimental work, the potential of the novel composites as heat sink materials is evaluated.

2. Experimental and Results

The raw materials used in this investigation were electrolytic precipitation Cu powder (>99.5%) and ultra fine MoSi₂ powder of high purity ($\approx 1 \mu m$).

Powders of $MoSi_2$ and Cu were mixed by planetary ball milling. Then, each mixture was cold pressed in a die at 200 MPa. To gain higher green strength, the die pressed samples were further compacted through cold isostatic pressing. The CIPed compacts were sintered in H₂. Final samples were fabricated by hot rolling, followed by a final annealing.

Samples of each composition were examined on properties tests of tensile strength, thermal-conductivity and thermal-expansion.

SEM micrograph of fracture surface in Fig.1 illustrates a

nearly uniform distribution of $MoSi_2$ particulates in the composites. During plastic deformation, voids eventually form dimples shown on the fracture surfaces^[5]. The Cu-2%MoSi₂ composite exhibits better mechanical performance than that of other composites fabricated.

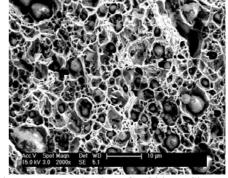


Fig. 1. Dimples and voids in a Cu-2% MoSi₂ sample.

Table 1 demonstrates the tensile properties tested. It can be drawn that the 2% MoSi₂ has the most favorable properties due to Orowan strengthening mechanism.

	Table 1. Tensile	property of cop	oper based com	posites
--	------------------	-----------------	----------------	---------

able 1. Tenshe property of copper based composites				
Composition	σ (MPa)	$\sigma_{0.2}(MPa)$	Elong. (%)	
0% MoSi ₂	195.7	66.2	24.8	
2% MoSi ₂	226.6	75.6	40.4	
4% MoSi ₂	213.3	81.5	11.4	
6% MoSi ₂	181.7	80.2	-	
8% MoSi ₂	146.6	70.4	7.4	

Fig.2 a) indicates pure copper and 2% MoSi₂ take a great lead in thermal conductive ability. As the vol% of MoSi₂ rises, thermal conductivity of the composites undergoes a

sharp drop due to electron scattering in the crystals.

Fig.2 b) is a summary on the relationship between vol% $MoSi_2$ and average CTE. The 2% $MoSi_2$ at 100 °C has the lowest CTE among all.

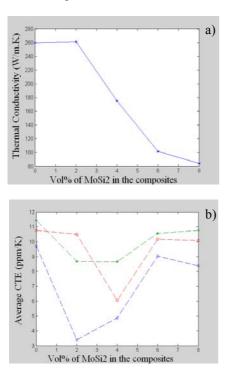


Fig. 2. Relationship between vol% $MoSi_2$ and the composite's thermal properties.

a) Thermal conductivity b) Thermal expansion

3. Summary

The main results from this work are summarized as follows:

- 1) Cu-MoSi₂ composites were prepared through a PM process^[6]. A density of over 90% and nearly uniform distribution of MoSi₂ particulates in the copper matrix were obtained.
- 2) As compared to Cu samples, the composites with proper amount of MoSi₂ as reinforcement exhibit good thermal conductivity, smaller thermal expansion, and better tensile strength; in particular, the CTE of Cu-2%MoSi₂ is five times lower than that of pure Cu sample.
- 3) Further improvement in both purity and density of the materials is needed for evaluation.

4. References

[1] Carl Zewben, Power Electronics Tech, Feb 2006.

[2] S.F. Moustafa, Materials Letters 53 (2002) 244-249.

[3] Carl Zewben, *CoolingZone Mag*, Advanced Materials for Thermal Management (Part 3).

[4] Tong Chingping, *Hitachi Cable Review* No.22 (AUGUST 2003).

[5] Cheng Jianyi, *Acta Materiae Compositae Sinica* Vol. 21 No. 3 June 2004.

[6] Brian Ralph, *Mater Processing Technol.* 63 (1997) 339-353.