

Investigation on Titania Photocatalyst Co-doped with La³⁺ and N³⁻ by Hydrothermal Method

Zhou Yanping, Liu Zhongqing, Li Zhenhua, Ge Changchun

Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R.China

Abstract

The TiO₂ photocatalysts co-doped with La³⁺ and N³⁻ were prepared by hydrothermal method with TiOSO₄ as the precursor. The obtained powders were characterized by means of XRD, BET, XPS and Uv-vis diffuse reflectance spectra. Furthermore, the photocatalytic activity of the prepared catalysts under visible light was researched with methylene blue (MB) as objective contamination under irradiation of electron saving-energy lamp with major emission at 545 nanometer. The results show that the La_xTiO_{2-y} N_y powder has narrower optical band gap due to substitution N³⁻ for O²⁻ of titania lattice, more enhanced separation efficiency of photoexcitated electron-hole pairs and accordingly higher visible light activity than the as-prepared TiO₂, La_xTiO₂ and TiO_{2-y} N_y.

Keywords : Hydrothermal method, Titania, Co-dope, Photocatalytic activity