Grain Growth Kinetics of Cobalt-doped SnO₂ by Varying Nb₂O₅ Content

Dong-Gyu Chang, Joon-Hyung Lee, Jeong-Joo Kim

Department of Inorganic Materials Engineering, Kyungpook National University, Daegu 702-701, Korea

Abstract

The aliovalent ions of CoO and Nb₂O₅ were incorporated into SnO₂ and the grain growth behavior of SnO₂ was investigated. When CoO was solely doped, it was expected that the Co ions with the negative effective charge will be segregated at the grain boundaries of SnO₂, which was thought to affect the grain boundary mobility and thus directly determine the grain growth characteristics of the SnO₂. When the amount of CoO is fixed to 1.0 mol% and the amount of Nb₂O₅ increased, the grain growth exponent of the SnO₂ changed from 3 to 2. Further addition of Nb₂O₅ recovered the exponent from 2 to 3. In the case of the SnO₂ specimen with the Nb₂O₅/CoO = 0.505, of which the grain growth exponent has changed from 3 to 2, it is believed that there are no segregation at the grain boundaries since the respective space charges generated by Nb⁺⁵ and Co⁺³ might be compensated with each other and an iso-electric point is formed. The segregation induced grain growth behavior of SnO₂ out of the iso-electric point region, where the concentration of either Co or Nb ions is richer than the other one, was also examined

PB06-T-19

The Grain Growth Velocity of SnO₂ Ceramics by Varying Nb₂O₅/CoO Co-doping Ratios

Dong-Gyu Chang, Joon-Hyung Lee, Jeong-Joo Kim

Department of Inorganic Materials Engineering, Kyungpook National University, Daegu 702-701, Korea

Abstract

It is known that the degree of grain boundary segregation and the diffusion coefficient at grain boundary are the factors affect the grain growth. When additives are doped both of the factors are dependent. In this study, aliovalent ions of Nb₂O₅ and CoO were co-doped in SnO₂ with different Nb₂O₅/CoO ratios and the grain growth velocity of SnO₂ was examined. On the basis of mass action law, the concentration of tin and oxygen vacancies is dependent on the Nb₂O₅/CoO ratios. Since different defects have different diffusion coefficients in an ionic crystal and the effective diffusion coefficient of the system is determined by a slow-moving ion, changes in diffusion velocity are expected when Nb₂O₅/CoO ratios are changed, which will resultantly affect the grain growth velocity. As a result, however, the maximum grain growth velocity was observed around Nb₂O₅/CoO = 0.25. This is not coincide with the Nb₂O₅/CoO = 0.50 where the respective space charges generated by Nb⁺⁵ and Co⁺³ are compensated with each other and an iso-electric point is formed without segregation at the grain boundaries. The grain growth velocity of SnO₂ was discussed from the viewpoint of the defect concentration.