

The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels

Maciej Sulowski^{1,a}, Andrzej Cias^{1,b}, Hanna Frydrych¹, Jerzy Frydrych¹, Irena Olszewska¹, Ryszard Golen¹, Marek Sowa¹

¹AGH-University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza 30 Ave., 30-059 Cracow, Poland ^asulek@uci.agh.edu.pl, ^bcias@uci.agh.edu.pl

Abstract

The effect of different cooling rate on the structure and mechanical properties of Fe-3%Mn-(Cr)-(Mo)-0.3%C steels is described. Pre-alloyed Astaloy CrM and CrL, ferromanganese and graphite were used as the starting powders. Following pressing in a rigid die, compacts were sintered at 1120 °C and 1250 °C in H_2/N_2 atmospheres and cooled with cooling rates 1.4 °C/min and 65 °C/min. Convecitve cooled specimens were subsequently tempered at 200 °C for 60 and 240 minutes.

Keywords : PM steels, mechanical properties, cooling rate, slow and convective cooling, sinter-hardening effect

1. Introduction

The present trend in PM structural steels is to increase their alloy content to obtain high strengths without any heat treatment. As a result, increasing amount of bainite and/or martensite in the structure can be expected in the parts made from such steels [1,2]. Very slow furnace cooling favoured plasticity, which ceased to be significant for cooling rate 1.4°Cmin⁻¹ [3]. When specimens cooled at 65°Cmin⁻¹ were tempered at 200°C, the improvement in properties was attained. The as-sintered specimens show low impact resistance but tempering at 200°C transforms tetragonal martensite to a hexagonal ɛ-carbide, plus low-carbon martensite, which lowers internal stresses [4]. In fact some PM steels are already being used in the fully bainitic/martensitic condition [5]. It becomes necessary to determine the factors underlying the strengthening of the bainitic structures and to evaluate the possibilities of influencing the intrinsic properties of these structures though modifications in composition or thermal treatment [6].

2. Experimental Procedure

The steels based on Astaloy CrL and CrM powders were produced and examined. 3% of Mn in the form of low-carbon ferromanganese and 0.3% graphite was added to powders mixtures. Mixtures of powders were cold compacted to prepare 55x10x5 mm TRS and ISO 2740 UTS test bars (green density - 6.82-7.14 gcm⁻³). Sintering was carried out in H₂/N₂ atmospheres at 1120°C and 1250°C for 60 minutes, employing slow (1.4 °Cmin⁻¹) [4] and convective (65°Cmin⁻¹) rates. The as-sintered and as-tempered densities (tempering at 200°C/60 and 240 minutes) were varied from 6.84-7.18 gcm⁻³.

3. Results

The investigation resulted in the identification of microstructures as having been produced in the pearlitic and bainitic zone on furnace as well as continuous cooling. Pearlitic structure forms on cooling at lower rates than those giving bainitic structure, which is relatively acicular and much finer than pearlitic structure. This actually accounts for the improved bend and tensile properties observed (Table 1). Bainite in the investigated steels consisted of an aggregate of acicular ferrite and carbides. Its morphology changed with the transformation temperature - the size of the particles and the acicularity of the structure increased as the temperature decreased. In many cases we have been able to show the occurrence of structures that did not correspond to the accepted classical definition, in which fine bainite and Mn-rich retained austenite zones, partly transformed into martensite, is present. When austenitic-martensitic plates extend across the grains, the impact strength (IT) decreases sharply. Also a spectacular strength increase together with an appreciable decrease in impact strength is observed in most specimens when at the end of the bainitic transformation a certain amount of acicular martensite is formed inside the acicular-bainitic regions.

4. Summary

The problem of quantitatively correlating properties with microstructure is complex. In case of the presented work, in specimens cooled with cooling rate 65°Cmin⁻¹, the problem is complicated by the fact that simultaneously in the structure very fine pearlite, bainite, martensite and retained austenite are presented.

01111	-Dase steels	tempt	i cu at i								
Sint	Tempering time, min	UTS, MPa	R _{0.2} , MPa	A, %	TRS, MPa	IT, J/cm ²	HV ₃₀ surf.				
atm. sintering temperature - 1120°C											
545 ND 1.0 1171 6.04 198											
	0	ND	ND	ND	1041	4.59	389				
	60	554	481	0.8	1216	3.37	245				
75H ₂ -25N ₂ H ₂		439	357	0.6	1195	5.82	305				
	240 0 60	625	553	0.6	1163	5.15	263				
		623 687	635	1.2	1096	5.47	203 291				
		514	507	0.8	825	4.09	291				
		447	ND	0.8	702	3.00	206				
		439	ND	0.6	1017	3.04	262				
[₂ -2		439 563	ND	0.0	1017	3.33	262 268				
75H	240	662	457	1.1	1030	3.58	210				
		535	474	0.8	1045	3.51	310				
	0	634	517	1.21	1230	4.11	342				
5		642	537	1.21 1.1	689	5.48	400				
5N	60	662			1049						
25H ₂ -75N ₂			608	1.0		3.55	318				
:5H		645	560	1.1	1105	4.95	317				
0	240	608	554	0.9	1018	6.99	280				
		575	517	0.9	1035	4.03	309				
	0	654	498	1.1	805	4.84	317				
5H ₂ -95N ₂		416	ND	0.5	828	4.05	372				
	60	542	481	0.8	1020	3.04	284				
		648	537	1.7	982	3.34	323				
	240	506	405	0.7	912	2.51	278				
		621	577	2.0	941	3.16	307				
	0	495	450	0.8	765	4.26	315				
N_2		595	492	1.9	399	2.47	395				
	60	541	481	0.8	1191	3.40	274				
		706	535	2.5	855	4.05	320				
	240	544	508	0.8	1082	3.39	298				
		700	587	2.5	1131	4.07	319				

Table 1. Mechanical properties of the Astaloy CrL and CrM-base steels tempered at 200°C – bold for CrM.

Many factors must be put forward to explain the investigated steels strength: inherent strength of bainite, solid solution hardening of the ferrite, obstacles placed by the austenitic-martensitic island, presence within the structure of an appreciable percentage of martensite resulting from partial transformation of the stabilised austenite and in th end the mechanical properties of bainitic structures. In the investigated steels a bainitic structure can be obtained by the direct quenching of austenite. This structure exhibits not only high UTS but also impact properties that approach those of tempered martensite. In these self-hardening steels it is practically impossible to obtain by continuous cooling a bainite with a structure similar to that of tempered martensite because of presence of acicular martensite.

Conti	nuation of]	Table 1	l .							
Sint atm.	Tempering time, min	UTS, MPa	R _{0.2} , MPa	А, %	TRS, MPa	IT, J/cm ²	HV ₃₀ surf.			
sintering temperature - 1250°C										
2	0	573	410	1.1	1354	13.97	252			
		858	563	2.3	1349	7.85	314			
	60	604	474	1.2	1613	15.18	222			
H_2		811	594	1.8	1543	6.55	302			
	240	630	543	1.2	1412	14.06	239			
		813	598	1.7	1463	5.82	282			
75H ₂ -25N ₂	0	594	447	1.3	1214	11.35	253			
		781	521	1.6	1501	8.23	306			
	60	682	475	1.5	1549	10.93	244			
H_2 -		752	632	1.3	1665	8.12	313			
75	240	638	506	1.4	1358	10.66	251			
		808	601	1.7	1428	6.35	296			
	0	622	505	1.2	1530	7.72	220			
$\overset{V}{\sim}$		886	573	2.3	1610	7.85	331			
25H ₂ -75N ₂	60	753	537	1.6	1348	6.47	278			
H_2 -		905	613	2.3	1695	6.88	304			
25	240	791	557	1.7	1530	9.19	282			
		811	576	1.7	1598	10.09	329			
	0	799	472	1.8	1519	5.23	296			
12		901	604	2.2	1572	13.00	334			
95N	60	785	535	1.7	1407	5.96	273			
5H ₂ -95N ₂		872	615	2.2	1610	8.92	319			
51	240	669	565	1.2	1169	6.31	268			
		925	595	2.8	1705	8.43	338			
	0	822	554	2.2	1428	10.35	281			
N_2		802	583	1.7	1675	14.07	328			
	60	829	554	2.0	1469	5.78	272			
		954	562	2.8	1658	10.71	315			
	240	813	596	1.7	1702	15.25	262			
		065	594	20	1527	7 09	227			

5. References

584

2.8

1527

7.98

327

965

- 1. A. Cias, Habilitation Thesis, AGH-UST, Cracow, 2004.
- 2. M. Youseffi, S.C. Mitchell, A.S. Wronski, and A. Cias: Powder Metall., **43**[4], 353(2000).
- 3. M. Sulowski, A. Cias, M. Stoytchev and T. Andreev: Mater. Sci. Forum, in press.
- 4. A. Cias, S. C. Mitchell: Powder Metall. Progress, 5, 82(2005).
- 5. A. Cias: Powder Metall. Progress, 5[3], 147(2005).
- A. Cias, S. C. Mitchell, A. Watts, A.S. Wronski, Powder Metall., 42[3], 227(1999).

The financial support under the contract no **3 T08D 039 27** (AGH-UST contract no 18.25.110.607) is gratefully acknowledged.